Sipakatau Ecopack: Leveraging Rice Straw for Sustainable and Eco-Friendly SME Packaging Solution

Nurul Faiqa(1), Aris Baharuddin(2*), Nabila Salma Wafirah(3), Muhridho Jaya Jusman(4),

(1) Faculty of Social Sciences and Law, Makassar State University, Indonesia
(2) Faculty of Social Sciences and Law, Makassar State University, Indonesia
(3) Faculty of Social Sciences and Law, Makassar State University, Indonesia
(4) Faculty of Social Sciences and Law, Makassar State University, Indonesia
(*) Corresponding Author




DOI: https://doi.org/10.26858/pdr.v7i2.63347

Abstract


Indonesia, as an agrarian country, holds significant potential in utilizing agricultural by-products such as rice straw. Sipakatau EcoPack, a Small and Medium-sized Enterprise (SME) in South Sulawesi, applies rice straw as a material to produce environmentally friendly food packaging. By processing rice straw sourced from farmers in South Sulawesi, and utilizing additional materials such as wheat flour, NaOH 10% powder, water, and PVA, Sipakatau EcoPack successfully creates biofoam as an alternative to styrofoam. The production process involves three stages: pulping, dough making, and molding using a specialized pressing machine. This article discusses market potential, production processes, as well as marketing strategies and business legality of Sipakatau EcoPack, including Intellectual Property Rights (IPR) protection. Sipakatau EcoPack demonstrates that environmentally friendly products not only provide ecological benefits but also offer significant economic opportunities.


Keywords


Sipakatau EcoPack; Rice Straw, Eco-friendly Packaging, Small and Medium-sized Enterprise (SME)

Full Text:

PDF

References


Arianti, F. D., Triastono, J., Pertiwi, M. D., Prabowo, A., Prasetyo, T., Chanifah, Haryanto, B., Megawati, Astuti, W., Djarot, I. N., Santoso, A. D., & Wijayanti, S. P. (2024). Renewable energy potential of rice straw and paunch manure as bioethanol feedstocks in Central Java, Indonesia. Case Studies in Chemical and Environmental Engineering, 9, 100677. https://doi.org/https://doi.org/10.1016/j.cscee.2024.100677

Bhatia, D., & Saroha, A. K. (2024). Biochar derived from pyrolysis of rice straw as an adsorbent for removal of phenol from water. Journal of Water Process Engineering, 59, 105003. https://doi.org/https://doi.org/10.1016/j.jwpe.2024.105003

Cuong, O. Q., Demont, M., Pabuayon, I. M., & Depositario, D. P. T. (2024). What monetary incentives are rice farmers willing to accept to stop straw burning? Evidence from a choice experiment in the Mekong Delta, Vietnam. Environmental Challenges, 15, 100913. https://doi.org/https://doi.org/10.1016/j.envc.2024.100913

Dang, Q. T., Nguyen, A. T. Q., Nguyen, A. D., Nguyen, N. T., Dam, T. T. N., Tran, T. T. T., Ngo, T. H. A., Nguyen, T. T. H., Tran, T. V, Dinh, V. M., & Nguyen, M. N. (2024). Desilification of phytolith exacerbates the release of arsenic from rice straw. Chemosphere, 349, 140797. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.140797

Dong, Q., Gong, C., Xie, G., Zhu, G., & Fang, Z. (2024). Thermodynamic modeling of freeze pretreatment in the destruction of rice straw structure combined with alkaline-hydrothermal method for enzymatic hydrolysis. Bioresource Technology, 403, 130864. https://doi.org/https://doi.org/10.1016/j.biortech.2024.130864

Fuadi, A. M., & Ataka, F. (2020). Pembuatan Kertas Dari Limbah Jerami Dan Sekam Padi Dengan Metode Organosolv.

Kamboj, R., Bains, A., Sharma, M., Kumar, A., Ali, N., Parvez, M. K., Chawla, P., & Sridhar, K. (2024). Green synthesis of rice straw-derived silica nanoparticles by hydrothermal process for antimicrobial properties and effective degradation of dyes. Process Safety and Environmental Protection, 185, 1049–1060. https://doi.org/https://doi.org/10.1016/j.psep.2024.03.078

Kim, S. M., Sim, Y.-B., Yang, J., Ko, J., Kim, D.-H., & Kim, S.-H. (2024). High-rate continuous biohydrogen (Bio-H2) production from rice straw hydrolysate using a dynamic membrane bioreactor (DMBR). International Journal of Hydrogen Energy, 71, 465–472. https://doi.org/https://doi.org/10.1016/j.ijhydene.2024.05.197

Ludfiani, D. D., Arianti, F. D., Pertiwi, M. D., Prasetyo, T., Djarot, I. N., Santoso, A. D., Sasongko, N. A., & Astuti, W. (2024). Ensiling treatment of rice straw with cow paunch content to enhance bioethanol production. Case Studies in Chemical and Environmental Engineering, 10, 100778. https://doi.org/https://doi.org/10.1016/j.cscee.2024.100778

Manna, D., Chowdhury, R., Hassan, M. K., Vepsäläinen, J., Kuittinen, S., & Pappinen, A. (2024). Catalytic action of hydronium-ion in rice straw pretreatment and enhancement of enzymatic hydrolysis and ethanol production. Next Energy, 3, 100112. https://doi.org/https://doi.org/10.1016/j.nxener.2024.100112

Mojoodi, S., Zilouei, H., & Karimi, K. (2024). Improvement of biohydrogen production from rice straw hydrolysate by green-self-prepared nano-silica. Fuel, 363, 130887. https://doi.org/https://doi.org/10.1016/j.fuel.2024.130887

Mothe, S., Muramreddy Jugal, S., Rao, P. V., & Sridhar, P. (2024). Rice straw anaerobic co-digestion: Comparing various pre-treatment techniques to enhance biogas production. Bioresource Technology Reports, 25, 101788. https://doi.org/https://doi.org/10.1016/j.biteb.2024.101788

Nguyen, H. N., Tran-Nguyen, P. L., Khuong, D. A., & Tsubota, T. (2024). Simultaneous syngas and CO2 adsorbent production via rice straw gasification: An experimental study. Biomass and Bioenergy, 183, 107137. https://doi.org/https://doi.org/10.1016/j.biombioe.2024.107137

Rhofita, E. I. (2016). Kajian pemanfaatan limbah jerami padi di bagian hulu. Jurnal Al-Ard: Jurnal Teknik Lingkungan, 1(2), 74–79.

Röder, M., Thornley, P., & Jamieson, C. (2024). The greenhouse gas performance and climate change mitigation potential from rice straw biogas as a pathway to the UN sustainable development goals. Biomass and Bioenergy, 182, 107072. https://doi.org/https://doi.org/10.1016/j.biombioe.2024.107072

Sidar, A., Voshol, G. P., El-Masoudi, A., Vijgenboom, E., & Punt, P. J. (2024). Highly variable domain architecture in carbohydrate-active enzymes highlights Streptomyces as promising resource for rice straw bioconversion. Bioresource Technology Reports, 25, 101775. https://doi.org/https://doi.org/10.1016/j.biteb.2024.101775

Singh, A. K., Bedi, R., & Khajuria, A. (2024). A review of composite materials based on rice straw and future trends for sustainable composites. Journal of Cleaner Production, 457, 142417. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.142417

Singh, Y., Sharma, S., Kumar, U., Sihag, P., Balyan, P., Singh, K. P., & Dhankher, O. P. (2024). Strategies for economic utilization of rice straw residues into value-added by-products and prevention of environmental pollution. Science of The Total Environment, 906, 167714. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.167714

Srivastava, N., Khan, P. A., Lal, B., Singh, R., Ahmad, I., & Mishra, P. K. (2024). Preparation of activated nanocarbon from different variety of rice straw for fermentative hydrogen production from alkali spent treated rice straw hydrolyzate. International Journal of Hydrogen Energy. https://doi.org/https://doi.org/10.1016/j.ijhydene.2024.01.189

Tamilselvan, R., & Immanuel Selwynraj, A. (2024). Enhancing biogas production through photocatalytic pretreatment of rice straw co-digested with cow dung and food waste using a novel g-C3N4/SiO2/bentonite catalyst. Process Safety and Environmental Protection, 187, 799–809. https://doi.org/https://doi.org/10.1016/j.psep.2024.05.017

Thangapandian, P., Seenivasan, S., Raj Kumar, P., Kailasavalli, S., & Paulsingarayar, S. (2024). Effects of chemical treatment on natural (rice straw/neem saw dust) fiber morphology and mechanical properties of its composite material. Materials Letters, 364, 136288. https://doi.org/https://doi.org/10.1016/j.matlet.2024.136288

Tian, B., Yang, Y., Chen, A., Peng, L., Deng, X., Yang, Y., Zeng, Q., & Luo, S. (2024). Long-term straw removal and double-cropping system reduce soil cadmium content and uptake in rice: A four-year field analysis. Journal of Environmental Sciences. https://doi.org/https://doi.org/10.1016/j.jes.2024.05.050

Wang, C., Ren, Y., Chai, bo, Zhang, M., Sun, Y., Yan, J., Sun, L., & Chi, R. an. (2024). Fabrication of rice-straw lignin/polyacrylonitrile composite membrane for lithium-ion battery separator. Materials Letters, 368, 136687. https://doi.org/https://doi.org/10.1016/j.matlet.2024.136687

Yusron, M., Karimah, A., Solihat, N. N., Ismayati, M., Anita, S. H., Zulfiana, D., Ismadi, Purnomo, D., Fitria, Nurcahyani, P. R., Syed Bukhari, M. N. S., Syafii, W., & Fatriasari, W. (2024). Preparation of high water-retention biodegradable kidney tray from rice straw pulp. Materials Today Communications, 38, 108236. https://doi.org/https://doi.org/10.1016/j.mtcomm.2024.108236

Zhao, Y., Lu, T., Xu, G., Luo, Y., Zhang, X., Wu, X., Han, X., Tester, J. W., & Wang, K. (2024). Hydrothermal co-carbonization of rice straw and acid whey for enhanced hydrochar properties and nutrient recovery. Green Energy and Resources, 100077. https://doi.org/https://doi.org/10.1016/j.gerr.2024.100077


Article Metrics

Abstract view : 17 times | PDF view : 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nurul Faiqa, Aris Baharuddin, Nabila Salma Wafirah, Muhridho Jaya Jusman