Efektivitas Katalis Fe2O3 Terimpregnasi dalam Keramik Berpori Gelcasting Pada Proses Fotodegradasi Fenol

Sumiati Side(1), Suriati Eka Putri(2*), Nita Magfirah Ilyas(3), Abd. Rahman(4),

(1) Universitas Negeri Makassar
(2) Universitas Negeri Makassar
(3) Universitas Negeri Makassar
(4) Universitas Negeri Makassar
(*) Corresponding Author




DOI: https://doi.org/10.26858/ijfs.v7i2.26301

Abstract


Abstrak. Penelitian eksperimen ini merupakan penelitian lanjutan yang bertujuan untuk mengetahui efektivitas katalis Fe2O3 yang terimpregnasi ke dalam keramik berpori gelcasting pada proses fotodegradasi fenol. Keramik berpori disintesis dengan metode gelcasting menggunakan clay alam sebagai bahan dasar dan binder pati sagu sebesar 8% dengan karboksimetil selulosa (CMC) sebagai dispersan. Keramik berpori gelcasting selanjutnya diembankan katalis Fe2O3 metode adsorpsi yang kemudian disebut Fe2O3-keramik berpori. Material yang dihasilkan selanjutnya digunakan dalam proses degradasi fenol 10 ppm (pH 8) selama 60 menit. Pengukuran konsentrasi hasil degradasi fenol menggunakan Spektrofotometer UV-Vis pada panjang gelombang maksimum 270 nm. Efektivitas katalis Fe2O3 dalam mendegradasi fenol meningkat ketika diemban ke dalam keramik berpori. Fotodegradasi tertinggi terjadi pada penambahan Fe2O3-keramik berpori dan diiridiasi UV sebesar 58,01%.


Keywords


Keramik Berpori Gelcasting, Fe2O3-keramik berpori, Fotodegradasi Fenol

Full Text:

PDF

References


Alag, H. K., & Zamel, R. S. (2018). Studying the Properties of Porous Alumina Using Starch as a Binder. Journal of Al-Nahrain University of Science, 21(3), 112–118. https://doi.org/10.22401/jnus.21.3.13

Alves, H. P. A., Silva, J. B., Campos, L. F. A., Torres, S. M., Dutra, R. P. S., & Macedo, D. A. (2016). Preparation of mullite based ceramics from clay–kaolin waste mixtures. Ceramics International, 42(16), 19086–19090. https://doi.org/10.1016/j.ceramint.2016.09.068

Coronas, J., & Santamaría, J. (1999). Catalytic reactors based on porous ceramic membranes. Catalysis Today, 51(3–4), 377–389. https://doi.org/10.1016/S0920-5861(99)00090-5

Dedov, A. G., Voloshin, Y. Z., Belov, A. S., Loktev, A. S., Bespalov, A. S., & Buznik, V. M. (2019). New heterogeneous catalytic systems based on highly porous ceramic materials modified with immobilized d-metal cage complexes for H2 production from CH4. Mendeleev Communications, 29(6), 669–671. https://doi.org/10.1016/j.mencom.2019.11.022

Enrico. (2019). Dampak Limbah Cair Industri Tekstil Terhadap Lingkungan dan Aplikasi Tehnik Eco Printing sebagai Usaha Mengurangi Limbah. Moda, 1(1), 5–13.

Fedotov, S., Uvarov, V. I., Tsodikov, M. V., Paul, S., Simon, P., Marinova, M., & Dumeignil, F. (2021). Production of styrene by dehydrogenation of ethylbenzene on a [Re, W]/γ-Al2O3 (K, Ce)/α-Al2O3 porous ceramic catalytic converter. Chemical Engineering and Processing - Process Intensification, 160, 108265. https://doi.org/10.1016/j.cep.2020.108265

Fernandes, A., Makoś, P., Khan, J. A., & Boczkaj, G. (2019). Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes. Journal of Cleaner Production, 208, 54–64. https://doi.org/10.1016/j.jclepro.2018.10.081

Ilyas, M. A. (2016). Studi Pembuatan Keramik Berpori Dari Lumpur Lapindo Dengan Tanin Sebagai Cetakan Pori. Jurnal Sangkareang Mataram, 2(2), 41–48. Retrieved from www.journal.uta45jakarta.ac.id

Ke, Q., Zhang, Y., Wu, X., Su, X., Wang, Y., Lin, H., … Chen, J. (2018). Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers. Journal of Environmental Management, 222(February), 185–189. https://doi.org/10.1016/j.jenvman.2018.05.061

Keller, B. P. (1992). A survey of survey evidence. Litigation, 42(7), 23–71.

Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735–758. https://doi.org/10.1021/cr00035a013

Liu, H., Li, C., Ren, X., Liu, K., & Yang, J. (2017). Fine platinum nanoparticles supported on a porous ceramic membrane as efficient catalysts for the removal of benzene. Scientific Reports, 7(1), 3–10. https://doi.org/10.1038/s41598-017-16833-0

Lu, Y., Liu, J., Ren, B., Wang, C., Rong, Y., Gan, K., … Yang, J. L. (2020). Room-temperature gelcasting of alumina with tartaric acid and glutaraldehyde. Ceramics International, 46(8), 11432–11435. https://doi.org/10.1016/j.ceramint.2020.01.119

Ma’Ruf, A., & Al Fathoni, M. A. S. (2018). Development of porous ceramic membrane from natural zeolite - Clay for microfiltration. IOP Conference Series: Materials Science and Engineering, 403(1). https://doi.org/10.1088/1757-899X/403/1/012006

Miao, L., Wu, X., Ji, Z., Zhao, Z., Chang, C., Liu, Z., & Chen, F. (2022). Microwave-assisted preparation of porous fibrous ceramic-based catalytic filter elements for the simultaneous removal of NOx and dust from high-temperature gases. Separation and Purification Technology, 278(August 2021), 119549. https://doi.org/10.1016/j.seppur.2021.119549

Montanaro, L., Coppola, B., Palmero, P., & Tulliani, J. M. (2019). A review on aqueous gelcasting: A versatile and low-toxic technique to shape ceramics. Ceramics International, 45(7), 9653–9673. https://doi.org/10.1016/j.ceramint.2018.12.079

Moradi, V., Ahmed, F., Jun, M. B. G., Blackburn, A., & Herring, R. A. (2019). Acid-treated Fe-doped TiO2 as a high performance photocatalyst used for degradation of phenol under visible light irradiation. Journal of Environmental Sciences (China), 83, 183–194. https://doi.org/10.1016/j.jes.2019.04.002

Putri, S. E. (2013). Pengaruh Perbandingan monomer AM dan Crosslinker MBAM pada Pembuatan Keramik Berpori Secara Gelcasting Dengan Bahan Dasar Lumpur Lapindo The Influence of Ratio AM Monomer and MBAM Crosslinker on Synthesis of Porous Ceramic by Gelcasting Method Using Lapin. 38–45.

Putri, S. E., & Pratiwi, D. E. (2016). The Effect of Mole Ratio of Acrylamide (AM) Monomer and Methylene-bis-acrylamide (MBAM) Crosslinker Toward the Hardmess of Gelcasting Porous Ceramics. Proceeding International Conference on Mathematic, Science, Technology, Education and Their Applications, 1(1), 412–415.

Putri, S. E., Pratiwi, D. E., Tjahjanto, R. T., Mardiana, D., & Subaer. (2018). On the effect of acrylamide and methylenebicacrylamid ratio on gelcasted ceramic pore character. Journal of Chemical Technology and Metallurgy, 53(5), 841–844.

Putri, S. E., Pratiwi, D. E., Triandi, R., Mardiana, D., & Side, S. (2018). Performance Test of Gelcasted Porous Ceramic as Adsorbent of Azo Dyes. Journal of Physics: Conference Series, 1028(1). https://doi.org/10.1088/1742-6596/1028/1/012039

Sánchez-Rodríguez, D., Méndez Medrano, M. G., Remita, H., & Escobar-Barrios, V. (2018). Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation. Journal of Environmental Chemical Engineering, 6(2), 1601–1612. https://doi.org/10.1016/j.jece.2018.01.061

Side, S., Putri, S. E., & S, N. I. (n.d.). Determination of the Effectiveness of Phenol Degradation Types Using Zeolite / TiO 2 Composites. (51), 1358–1363.

Sin, J. C., Lim, C. A., Lam, S. M., Mohamed, A. R., & Zeng, H. (2019). Facile synthesis of novel ZnO/Nd-doped BiOBr composites with boosted visible light photocatalytic degradation of phenol. Materials Letters, 248, 20–23. https://doi.org/10.1016/j.matlet.2019.03.129

Singh, P., Sonu, Raizada, P., Sudhaik, A., Shandilya, P., Thakur, P., … Gupta, V. K. (2019). Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for phenol degradation under visible light. Journal of Saudi Chemical Society, 23(5), 586–599. https://doi.org/10.1016/j.jscs.2018.10.005

Tian, C., Huang, X., Guo, W., Gao, P., & Xiao, H. (2020). Preparation of SiC porous ceramics by a novel gelcasting method assisted with surface modification. Ceramics International, 46(10), 16047–16055. https://doi.org/10.1016/j.ceramint.2020.03.155

US Enviromental Protection Agency. (2000). Phenol Hazard Summary. Phenol, 1(1), 95–108.

Vaiano, V., Matarangolo, M., Murcia, J. J., Rojas, H., Navío, J. A., & Hidalgo, M. C. (2018). Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Applied Catalysis B: Environmental, 225(November 2017), 197–206. https://doi.org/10.1016/j.apcatb.2017.11.075

Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A Short Review of Techniques for Phenol Removal from Wastewater. Current Pollution Reports, 2(3), 157–167. https://doi.org/10.1007/s40726-016-0035-3

Wan, W., Huang, C. e., Yang, J., & Qiu, T. (2014). Study on Gelcasting of Fused Silica Glass Using Glutinous Rice Flour as Binder. International Journal of Applied Glass Science, 5(4), 401–409. https://doi.org/10.1111/ijag.12060

Zanur, H., Putra, A., & Astuti, A. (2017). Sintesis Dan Karakterisasi Pigmen Hematit (α-Fe2O3) Dari Bijih Besi Di Jorong Kepalo Bukik Kabupaten Solok Selatan Menggunakan Metode Presipitasi. Jurnal Fisika Unand, 6(2), 149–155. https://doi.org/10.25077/jfu.6.2.149-155.2017

Zhang, G., Song, A., Duan, Y., & Zheng, S. (2018). Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants. Microporous and Mesoporous Materials, 255, 61–68. https://doi.org/10.1016/j.micromeso.2017.07.028

Zhang, Y., Gao, B., Lu, L., Yue, Q., Wang, Q., & Jia, Y. (2010). Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification-dynamic membrane bioreactor-coagulation process. Journal of Petroleum Science and Engineering, 74(1–2), 14–19. https://doi.org/10.1016/j.petrol.2010.08.001


Article Metrics

Abstract view : 192 times | PDF view : 39 times

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.