Perbandingan Laju Pertumbuhan Kristal GaAs pada Reaktor Metal organic Chemical Vapour Deposition Suseptor Miring Melalui Analisis Numerik

Muh. Tawil(1*),

(1) Pendidikan IPA, Fakultas Matematika dan Ilmu pengetahuan Alam, Universitas Negeri Makassar
(*) Corresponding Author




DOI: https://doi.org/10.35580/chemica.v24i2.54514

Abstract


ABSTRAK

Tujuan penelitian ini membandingkan laju pertumbuhan kristal GaAs pada Reaktor Metal organic Chemical Vapour Deposition (MOCVD) suseptor miring dengan menggunakan  Analisis numerik.  Penelitian ini menggunakan metode analisis numerik dengan tahapan: 1) mengidentifikasi parameter-parameter  reactor MOCVD suseptor miring, 2) mengidentifikasi parameter-parameter hasil eksperimen, 3) menyelesaikan persamaan eksak laju pertumbuhan Kristal GaAs pada reactor MOCD suseptor miring, 4) menguji coba data-data ekseprimen ke dalam persamaan eksak, 5) mencari perbandingan hasil analisis numerik dan ahsil eksprimen melalui grafik hubungan antara daerah pertumbuhan Kristal GaAs terhadap laju pertumbahan, 6) menganalisis hasil perbandingan laju pertumbuhan krsital GaAs di dalam reactor MOCVD suseptor miring. Hasil penelitian ditemukan terdapat kesesuaian  hasil analisis numerik dengan hasil ekseperimen laju pertumbuhan kristal GaAs konstan di daerah ujung suseptor dengan kemiringan 3.50 dengan kecepatan gas pembawa H2 sebesar 15.7 cm/s, sedangkan pada daerah  laju pertumbuhan Kristal GaAs berkurang dengan bertambahnya z.

Kata Kunci: MOCVD, GaAs, kristal, reaktor, suseptor miring

 

ABSTRACT

The purpose of this study was to compare the growth rate of GaAs crystals in the Metal organic Chemical Vapor Deposition (MOCVD) reactor with tilted acceptors using numerical analysis and experimental results. This study uses a numerical analysis method with the following steps: 1) identifying the parameters of the tilted susceptor MOCVD reactor, 2) identifying the parameters of the experimental results, 3) solving the exact equation for the growth rate of GaAs crystals in the tilted susceptor MOCD reactor, 4) testing the data. experimental data into exact equations, 5) compare the results of numerical analysis and experimental results through the graph of the relationship between GaAs crystal growth area and growth rate, 6) analyze the results of the comparison of the growth rate of GaAs crystals in the inclined susceptor MOCVD reactor. The results of the study found that there was a match between the results of numerical analysis with experimental results of constant GaAs crystal growth rate in the susceptor tip area with a slope of 3.50 with H2 carrier gas velocity of 15.7 cm/s, while in the z≤z_o region the GaAs crystal growth rate decreased with increasing z.

Keywords:MOCVD, reactor, oblique, susceptor, GaAs crystal


Full Text:

PDF

References


Arifin, P., Sutanto, H., Sugianto., & Subagio, A. (2021). Plasma-Assisted MOCVD Growth of Non-Polar GaN and AlGaN on Si(111) Substrates Utilizing GaN-AlN Buffer Layer. Coatings,12(1), 94. https://doi.org/10.3390/coatings12010094

Bloem, J. (2022). High chemical vapour deposition rates of epitaxial silicon layers. Journal of Crystal Growth. 18(1): 70-76. https://doi.org/10.1016/0022-0248(73)90150-4

Brown, R., Bogdan, P.R ., Hui, J., Khalifa, M; Azizur-Rahman., Manyu, D., Mingchu, T., Baolai, L., Huiyun, L., & Qiang, L. (2022). Mid-infrared InAs/InAsSb Type-II superlattices grown on silicon by MOCVD. Journal of Crystal Growth, 506: 126860. https://doi.org/10.1016/j.jcrysgro.

Chang-Hun, S., Minwoo, K., Hyunchul, J., Sang, T. L., Hyeong-Ho, P., Donghyun, K., Keunman, S., Dae-Hong, K., & Chan-Soo, S. (2022). Morphology Transition of Te-Doped InAs Nanowire on InP(111)B Grown Using MOCVD Method. Crystals, 12(12), 1846.

https://doi.org/10.3390/cryst12121846

Chen,W., Jiao,T., Li,Z., Diao,Z., Li,Z., Dong, Xin., Zhang, Y., Zhang , B. (2022). Preparation of β-Ga2O3 nanostructured films by thermal oxidation of GaAs substrate. Crystals .48(4): 5698-5703. .https://doi.org/10.1016/j.ceramint.2021.11.115

Chen,X; Xiao,Y; Yang, C; Zhicheng, Z; Yudan, G; & Jun, W. (2022). MOCVD growth and thermal stability analysis of 1.2 µm InGaAs/GaAs multi quantum well structure. Journal of Alloys and Compounds, 922(20): 166173. https://doi.org/10.1016/j.jallcom.2022.166173

Chengyan, Gu; Chengming, L; & Xianglin, L. (2012). Design of a three-layer hot-wall horizontal flow MOCVD reactor. Journal of Semiconductors, 33(9): 33093005. DOI 10.1088/1674-4926/33/9/093005

Chulsoo, B; Dae-Hyeon, K; Kang, W. J; Kwang-Sun, K. (2013). Numerical Analysis on the Development of the Large-Scale Showerhead for Depositing AlGaInN Films. Conference Paper

Chun-Pin, H; Rather, M. A; Chien-Ting, W; Loganathan, R. (2020). Crystal Transformation of Cubic BN Nanoislands to Rhombohedral BN Sheets on AlN for Deep-UV Light-Emitting Diodes. DOI:10.1021/acsanm.0c00681

Ik-Tae, I; Oh, H.O; Nakano, Y. (2008). A Study on the Non-linear Surface Reaction Model for the GaAs Film Growth During MOCVD Process.Journal of Crystal Growth 261(2):214-224. DOI:10.1016/j.jcrysgro.2003.11.024

Jiadai -An; Dai, X; Feng, L; & Zheng, J. (2021). Parameter study of the high temperature MOCVD numerical model for AlN growth using orthogonal test design.Scientific Reports, 11(8877). https://www.nature.com/articles/s41598-021-87554-8

Komeno, J. (2011). Gas Phase Reactions in Horizontal MOCVD Reactors. MRS Online Proceedings Library (OPL) , 94(255).: Symposium D – Initial Stages of Epitaxial Growth , Cambridge University Press. DOI: https://doi.org/10.1557/PROC-94-255

Masakazu, S. (2000). MOCVD of InGaAsP, InGaAs and InGaP over InP and GaAs substrates: Distribution of composition and growth rate in a horizontal reactor. Applied Surface Science 159:318-327. DOI:10.1016/S0169-4332(00)00150-1

Masakazu, S; Satoshi, Y; Tomohari, S; & Yoshiaki, N. (2009). Reaction Kinetics of GaN Metal-Organic Vapor-Phase Epitaxy Analyzed by Multi-Scale Profiles of Growth Rate.. ECS Transactions 25(8). DOI:10.1149/1.3207632

Masakiyo, I, K. S; Kojima; Yuzo, K. (1986). Uniform growth of GaAs by MOCVD on multi-wafers. Journal of Crystal Growth. 77(1–3): 157-162. https://doi.org/10.1016/0022-0248(86)90296-4

Yao-Chen, C. (2014);Chyi-Tsong Chen;Yao-Chen Chung. (2014). Mathematical modeling and optimal design of an MOCVD reactor for GaAs film growth.Journal Taiwan Inst Chem E.

Ming-Tsang Lee, Chien-Fu Tseng;Tsung-Yen Tsai; Yen-Hsiu Huang.Journal of Crystal Growth 432.DOI:10.1016/j.jcrysgro.2015.09.003

Liu, W. C., Wang, H., Wang, J. B., Wang, Q., Wang, J., Fan, J., Zou, Y., & Ma, Xiaohui. (2022). The improvement properties of InGaAs/InGaAsP multiple quantum wells using the GaAs insertion layer. Thin Solid Films, 756: 139363. https://doi.org/10.1016/j.tsf.2022.139363Get rights and content

Rasha, H., El-Jaroudi., Kyle, M., McNicholas., Herbert, S. M., Robert, K., & Seth, R. B. (2022). Growth Advancement of GaAs-Based BGaInAs Alloys Emitting at 1.3 μm by Molecular Beam Epitaxy. Cryst. Growth. 22(6): 3753–3759. https://doi.org/10.1021/acs.cgd.2c00131

Shu-Quan, Z; Xiao, M. R; Yong-Qing, H; Qi-Wang; & Hui, H. (2010). Numerical studies on flow and thermal fields in MOCVD reactor. Chinese Science Bulletin, 55:560–566. https://link.springer.com/article/10.1007/s11434-009-0590-8

Schimmel, S., Sun, W., & Dropka, N. (2022). Artificial Intelligence for Crystal Growth and Characterization. Crystals, 12(9), 1232.

https://doi.org/10.3390/cryst12091232

Sittig, R., Cornelius, N., Sascha, K., Stephanie, B., Richard, S., Jiasheng, H, Ponraj, V.,Pascal Pruy., Simone, L.P., Michael, J., & Peter, M. (2022). Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform. Journal Nanophotonics. 8(2):67-90. https://doi.org/10.1515/nanoph-2021-0552

Stock, L; Richter, W. (1986). Vertical versus horizontal reactor: An optical study of the gas. DOI:10.1016/0022-0248(86)90294-0

Van de Ven, J., Rutten, G.M.J., Raaijmakers, M.J., & Giling, L.J. (2019). Gas phase depletion and flow dynamics in horizontal MOCVD reactors. Journal of Crystal Growth, 76(2): 352-372. https://doi.org/10.1016/0022-0248(86)90381-7

Vilasam, A. G. S., Prasanna, P. K., Yuan, W., Azimi, Z., Kremer, F., Jagadish, C., Chakraborty, S., & Tan, H. H. (2022). Epitaxial Growth of GaAs Nanowires on Synthetic Mica by Metal–Organic Chemical Vapor Deposition. ACS Appl. Mater. Interfaces, 14(2): 3395–3403 https://doi.org/10.1021/acsami.1c19236

Vladimir, G., Dubrovskii (2022). Theory of MOCVD Growth of III-V Nanowires on Patterned Substrates. Nanomaterials, 12(15): 2632.

https://doi.org/10.3390/nano12152632

Takahashi, R., & Ogirima. M. (1982). Chemical Reactions in Epitaxial Growth. Journal of Crystal Growth, 24(1): 92-102. DOI:https://doi.org/10.5940/jcrsj.24.92

Wang, B., Zeng, Y., Song, Y., Wang, Y., Liang, L., Qin, L., Zhang, J., Jia, P., Lei, Y., Qiu, C., Ning, Y., & Wang, L. (2022). Principles of Selective Area Epitaxy and Applications in III–V Semiconductor Lasers Using MOCVD: A Review. Crystals, 12(7), 1011; https://doi.org/10.3390/cryst12071011

Yang, F.H. (2014). Modern metal-organic chemical vapor deposition (MOCVD) reactors and growing nitride-based materials. Metal organic chemical depostion.Semiconduktor. https://www.sciencedirect.com/topics/chemistry/metal-organic-chemical-vapor- deposition

Zenk, M; Lukin , G; Bastin, D; Doradziński, R; Beyer , F.C.; Meissner ,E; & Friedrich ,J. (2022). J.Crystals 2022, 12(9), 1248; https://doi.org/10.3390/cryst12091248


Article Metrics

Abstract view : 47 times | PDF view : 19 times

Refbacks

  • There are currently no refbacks.


ISSN: 2722-8649

Diterbitkan oleh Jurusan Kimia FMIPA Universitas Negeri Makassar (UNM) dua kali dalam setahun yaitu bulan Juni dan Desember.

Alamat Redaksi :Jurusan Kimia, Fakultas MIPA UNM, JL. Dg. Tata Parangtambung, Makassar 90224 Indonesia, Telp. 0411-840295; Fax: 0411840295;E-mail : [email protected]