Analisis Kekonvergenan pada Barisan Peubah Acak di Ruang Riil

Syafruddin Side(1*), Wahidah Sanusi(2), Nur Izzah Nurdin(3),

(1) Jurusan Matematika FMIPA UNM
(2) Jurusan Matematika FMIPA UNM
(3) Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Makassar
(*) Corresponding Author




DOI: https://doi.org/10.35580/jmathcos.v6i1.33882

Abstract


Penelitian ini bertujuan untuk mengidentifikasi dan menjelaskan konsep, sifat asimptotik, hubungan dan terapan dari empat jenis kekonvergenan pada barisan peubah acak yaitu kekonvergenan hampir pasti, kekonvergenan dalam peluang, kekonvergenan dalam distribusi, dan kekonvergenan dalam rata-rata. Hasil dari kajian teori menunjukkan bahwa keempat jenis kekonvergenan ini, tertutup terhadap operasi aritmatika, setiap barisan bagiannya konvergen ke peubah acak yang sama, tetap konvergen di fungsi kontinunya, dan memiliki hubungan antara tiap-tiap jenisnya yaitu: (a) jika barisan peubah acak konvergen hampir pasti maka barisan tersebut konvergen dalam peluang berlaku sebaliknya jika barisan tersebut mempunyai barisan bagian yang konvergen hampir pasti ke limitnya, (b) jika barisan peubah acak konvergen dalam peluang maka barisan tersebut konvergen dalam distribusi berlaku sebaliknya jika limitnya suatu konstanta real, (c) jika barisan peubah acak konvergen dalam rata-rata maka barisan tersebut konvergen dalam peluang berlaku sebaliknya jika barisan tersebut terbatas dalam peluang, dan (d) tidak ada hubungan antara konvergen dalam rata-rata dan konvergen hampir pasti, serta dapat digunakan dalam pembuktian Hukum Bilangan Besar, Teorema Limit Pusat dan limit distribusi.

Kata Kunci: Kekonvergenan Hampir Pasti, Kekonvergenan dalam Peluang, Kekonvergenan dalam Distribusi, Kekonvergenan dalam Rata-rata.

This research aims to identify and explain the concepts, asymptotic properties, relationships and applications of four types of convergence of a sequence of random variable, namely convergence almost surely, convergence in probability, convergence in distribution and convergence in mean. The results of the theoretical study shows that these four types of convergence, are closed to arithmetic operations, each subsequence is convergent to the same random variable, remains convergent in the continuous function, and has a relationship between each type, namely: (a) if the sequence of random variable convergent almost surely then this sequence convergent in probability and otherwise if the sequence has a subsequence that convergent almost surely to its limit, (b) if the sequence of random variable convergent in probability then this sequence convergent in distribution and otherwise if the limit is a real constant, (c) if the sequence of random variable convergent in mean then this sequence convergent in probability and otherwise if the sequence is bounded in probability and (d) there is no relationship between convergent in mean and convergent almost surely, and also can be used in proving the Law of Large Number, Central Limit Theorem and limit distribution.

Keywords: Convergence Almost Surely, Convergence in Probability, Convergence in Distribution, Convergence in Mean.


Full Text:

PDF

References


Agusta, V., Putri, N., & Syahrul, M. S. (2019). Keterkaitan Antara Konvergen Almost Surely, Konvergen dalam Probabilitas, Konvergen dalam Mean, dan Konvergen dalam Distribusi. Journal Mathematics and Aplications.

Bhat, B. R. (1981). Modern Probability Theory (M. S. Sejwal (ed.)). Wiley Eastern Limited.

Hernadi, J. (2015). Analisis Real Elementer dengan Ilustrasi Grafis dan Numeris (L. Simarmata (ed.)). Penerbit Erlangga.

Papoulis, A. (1984). Probability, Random Variables, and Stochastics Processes (2nd ed.). McGraw-Hill.

Sungkono, J. (2013). Kekuatan Konvergensi Dalam Probabilitas dan Konvergensi Almost Surely. Jurnal Pendidikan Matematika FKIP UNWiDHA Klaten.

Tinungki, G. M. (2018). Ketidaksamaan Chebyshev Hukum Bilangan Besar pada Bisnis Asuransi. Jurnal Matematika, Statistika Dan Komputasi, 5(2), 86–92.


Article Metrics

Abstract view : 151 times | PDF view : 9 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JMathCos (Journal of Mathematics, Computations, and Statistics)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Indexed by:

         

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.