Kajian Konseptual Multirepresentasi pada Materi Perkuliahan Kelistrikan

Rahmawati Rahmawati(1*), Agustan Syamsuddin(2), Dewi Hikmah Marisda(3), Nasrah Nasrah(4),

(1) Universitas Muhammadiyah Makassar
(2) Universitas Muhammadiyah Makassar
(3) Universitas Muhammadiyah Makassar
(4) Universitas Muhammadiyah Makassar
(*) Corresponding Author




DOI: https://doi.org/10.26858/semnaspendipa.v1i1.26215

Abstract


Sebagian besar konsep-konsep fisika disajikan dalam berbagai format representasi yang diistilahkan sebagai multirepresentasi. Multirepresentasi dapat dijabarkan dalam empat bentuk representasi, yaitu representasi verbal, representasi diagram (gambar), representasi matematis, dan representasi grafik. Karakteristik materi kelistrikan yang bersifat abstrak dan cukup kompleks menjadikan materi ini sulit dipahami oleh sebagian besar mahasiswa calon guru fisika. Sejumlah penelitian terkait multirepresentasi dalam pembelajaran fisika dapat disimpulkan bahwa penggunaan multirepresentasi dapat membantu (maha)siswa dalam memahami konsep-konsep fisika. Artikel ini fokus membahas tentang kajian konseptual multirepresentasi pada materi perkuliahan Kelistrikan dalam Mata Kuliah Fisika Dasar Lanjut yang dikaji menggunakan metode study literature dari berbagai sumber yang relevan.

Full Text:

PDF

References


Ainsworth, S., & Loizou, A. T. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–681.

Arnold, M. & Millar, R. (1987). Being |constructive: An alternative approach to the teaching of

introductory ideas in electricity. Int. J. Sci. Educ. 9(5), 553–563.

Aviani, I., Erceg, N., & Mešić, V. (2015). Drawing and using free body diagrams: Why it may be better not to decompose forces. Research. Physical Review Special Topics - Physics Education, 11(020137), 1–14.

Borges, A. T. & Gilbert, J. K. (2010). Mental models of electricity. Int. J. Ment. Model. Electr.

January 2015, 37–41.

Cohen, R., Eylon, B., & Ganiel, U. (1983). Potential difference and current in simple electric circuits: a study of students’ concepts. Am. J. Phys. 51(5), 407–412.

Cosgrove, M. (1995). A study of science‐in‐the making as students generate an analogy for

electricity. Int. J. Sci. Educ. 17(3), 295–301.

Di Mauro, M. F., & Furman, M. (2016). Impact of an inquiry unit on grade 4 students??? science learning. International Journal of Science Education, 38(14), 2239–2258.

Engelhardt, P. V. & Beichner, R. J. (2004). Students’ |understanding of direct current resistive electrical circuits. Am. J. Phys., 72 (1). 98–115.|

Etkina, E.; van Heuvelen, A.; White-Brahmia, S.; Brookes, D. T. (2006). Topics, Scientific abilities and their assessment. Physical Review Special Research, – Physics Educatio, 2(020103), 1–15.

Finkelstein, N. (2005). Learning physics in context: a study of student learning about electricity and magnetism. Int. J. Sci. Educ., 27(10), 1187–1209.

Gänswein, W. (2011). Effectiveness of Information Use for Strategic Decision Making. Gabler.

Guttersrud, Ø. ., & Angell, C. (2010). Mathematics in Physics: Upper Secondary Applying, Physics Students’ Competency to Describe Phenomena GIREP-ICPE-MPTL. Mathematical and Graphical Representations. Conference, Reims-France.

Hekkenberg, A., Lemmer, M., & Dekkers, P. (2015). An analysis of teachers’ concept confusion concerning electric and magnetic fields. African J. Res. Math. Sci. Technol., 8457, January

, 34–44.

Heller, P. M. & Finley, F. N. (1992). Variable uses of alternative conceptions: a case study incurrent electricity. J. Res. Sci. Teach., 29(3), 259–275.

Heywood, D. & Parker, J. (1997). Confronting the analogy: primary teachers exploring the

usefulness of analogies in the teaching and learning of electricity. Int. J. Sci. Educ., 19(8), 869–885.

Hubber, P., & Tytler, R. (2017). Enacting a representation construction approach to teaching and learning astronomy. Dalam D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education. Springer.

Huinker, D. (2015). Representational competence: A renewed focus for classroom Mathematics, practice in mathematics (Wisconsin Teacher of Mathematics (ed.)). Spring 2015.

Ivanjek, L., Susac, A., Planinic, M., Andrasevic, A., & Milin-Sipus, Z. (2016). Student reasoning about graphs in different contexts. Physical Review Physics Education Research, 12(010106), 1–13.

Jacobs, G. (1989). Word usage misconceptions among first‐year university physics students. International Journal of Science Education, 11(4), 395–399.

Karam, R. (2014). Framing the structural role of mathematics in physics lectures: A case study on electromagnetism. Physical Review Special Topics - Physics Education Research, 10(010119), 1–23.

Karam, R., Pospiech, G., & Pietrocola, M. (2010). Mathematics in physics lessons: Developing structural skills. Proceeding of Selected Papers of The GIREP-ICPE-MPTL International Conference, 22-27 Agustus 2010, 121–126.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

Leppävirta, J. (2012). The Effect of Naïve Ideas on Students’ Reasoning About Electricity and Magnetism. Research in Science Education, 42(4), 753–767.

Maloney, D. P., O’Kuma, T. L., Hieggelke, C. J., & Van Heuvelen, A. (2001). Surveying students’ conceptual knowledge of electricity and magnetism. American Journal of Physics, 69(S1), S12–S23.

McDermott, L. C., Rosenquist, M. L., & van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Jounal of Physics Teachers, 55(6), 503–513.

Meltzer, D. E. (2002). The relationship between mathematics preparation and conceptual learning gains in physics: A possible “hidden variable” in diagnostic postest scores. American Journal Physics, 70(12), 1259–1268.

Nguyen, D. H., & Rebello, N. S. (2011). Students’ difficulties with multiple representations in introductory mechanics. US-China Education Review, 8(5), 559–569.

Nieminen, P., Savinainen, A., & Viiri, J. (2017). Learning about forces using multiple representations. In dalam D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education (pp. 163–182). Springer.

Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple representations in physics and science education – Why should we use them? dalam D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education. Springer.

Ornek, F., Robinson, W. R., & Haugan, M. P. (2008). What makes physics difficult? 3(1), 30–34.

Osborne, R. (1983). Towards modifying children’s ideas about electric current. Res. Sci. Technol. Educ. 1(1), 73–81.

Osborne, R. J. & Cosgrove, M. M. (1983). Children's conceptions of the changes of state of water J. Res. Sci. Teach., 20(9), 825–838.

Paatz, R., Ryder, J., Schwedes, H., & Scott, P. (2004). A case study: analysing the process of analogy based learning in a teaching unit about simple electric circuits. Int. J. Sci. Educ. 26(9), 1065–1081.

Psillos, D., Koumaras, P., & Valassiades, O. (1987). Pupils’ representations of electric current before, during, and after instruction on dc circuits. Res. Sci. Technol. Educ., 5(2), 185–199.

Podolefsky, N. S., & Finkelstein, N. D. (2007). Salience of representations and analogies in physics. AIP Conference Proceedings, 951, 164–167.

Rahmawati, Rustaman, N. Y., Hamidah, I., & Rusdiana, D. (2018). The Development and Validation Test to Evaluation Conceptual Knowledge of Prospective Physics Teachers on Electricity and Magnetism Topic. Jurnal Pendidikan IPA Indonesia, 7(4), 483–490.

Savinainen, A., Nieminen, P., Makynen, A., & Viiri, J. (2013). Teaching and evaluation materials utilizing multiple representations in mechanics. Physics Education, 48(3), 372–377.

Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541.

Shipstone, D. (1988). Pupils’ understanding of simple electrical circuits: some implications for

instruction Phys. Educ., 23(2), 92–96.

Steinberg, R. N., Wittmann, M. C., & Redish, E. F. (1997). Mathematical tutorials in introductory physics. AIP Conference Proceedings, 399, 1075–1092.

Stocklmayer, S. M. & Treagust, D. F. (1996). Images of electricity: how do novices and experts model electric current?. Int. J. Sci. Educ., 18(2), 163–178.

Touger, J. S. (1991). When words fail us. The Physics Teacher, 29, 90–95.

Uzun, M. S., Sezen, N., & Bulbul, A. (2012). Investigating students’ abilities related to graphing skill. Procedia-Social and Behavioral Sciences, 46, 2942–2946.

Waldrip, B., Prain, V., & Caralon, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research Science Education, 40(1), 65–80.

Zacharia, Z. C. & de Jong, T. (2014). The effects on students’ conceptual understanding of

electric circuits of introducing virtual manipulatives within a physical manipulativesoriented curriculum. Cogn. Instr., 32(2), 101–158.


Article Metrics

Abstract view : 188 times | PDF view : 30 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Rahmawati Rahmawati, Agustan Syamsuddin, Dewi Hikmah Marisda, Nasrah Nasrah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.