Bahan Ajar Konsep Dasar IPA Berbasis STEM Berkonteks Socio-Scientific Issues (SSI) untuk Meningkatkan Keterampilan Berpikir Kritis Mahasiswa PGSD

Erna Suhartini(1*), Rosita Putri Rahmi Haerani(2),

(1) Universitas Mulawarman
(2) Universitas Mulawarman
(*) Corresponding Author



Abstract


Abstrak. Kemampuan menganalisis dan mengevaluasi pemikiran dengan sebuah pandangan reflektif pada keterampilan berpikir kritis perlu difasilitasi dengan situasi pembelajaran yang memungkinkan mahasiswa untuk terlibat lebih dalam peristiwa ilmiah kompleks dan masalah kehidupan nyata. STEM merupakan pendekatan pembelajaran yang interdisipliner dan berfokus pada pemecahan masalah yang otentik  sehingga mampu melatihkan keterampilan berpikir kritis. Integrasi STEM saat ini biasanya diajarkan dengan sedikit atau tanpa penekanan pada aspek sosial dan pengalaman budaya siswa sehingga perlu untuk menjadikan isu sosial-ilmiah yang relevan seperti sumber energi terbarukan, pemanasan global ke dalam konteks STEM. Penelitian ini berlakukan pada mahasiswa PGSD, FKIP Universitas Mulawarman Semester 5 dengan jumlah sampel 30 mahasiswa. Jenis penelitian yang digunakan yakni pre-eksperimen dengan rancangan one shot pretest-posttest group. Instrumen penelitian berupa soal essay  keterampilan berpikir kritis pada materi Hutan Hujan Tropis meliputi aspek Question at issue, Purpose, information, Concept, Assumtion, Point of View, Interpretation and Inference, Implication and Consequence. Berdasarkan nilai N-Gain diperoleh peningkatan keterampilan berpikir kritis sebesar 0.48 yang termasuk dalam kategori sedang. Aspek dengan Peningkatan tertinggi yakni membuat pertanyaan berdasarkan isu pelestarian habitat dan peningkatan terendah terdapat pada aspek Assumtion atau membangun argument berdasarkan bukti relevan. Hasil penelitian menunjukkan bahwa bahan ajar STEM berkonteks Socio Scientifict Issue (SSI) dapat meningkatan keterampilan berpikir kritis mahasiswa PGSD.

 

Kata Kunci: STEM, SSI, Berpikir Kritis

Full Text:

PDF

References


Cavagnetto, A., Hand, B. M., & Norton-Meier, L. (2010). The nature of elementary student science discourse in the context of the science writing heuristic approach. International Journal of Science Education, 32(4), 427–449. https://doi.org/10.1080/09500690802627277

Clark, A. C., & Ernst, J. V. (2007). A model for the integration of science, technology, engineering, and mathematics. The Technology Teacher, 66(4), 24–26.

Davidi, E. I. N., Sennen, E., & Supardi, K. (2021). Integrasi Pendekatan STEM (Science, Technology, Enggeenering and Mathematic) Untuk Peningkatan Keterampilan Berpikir Kritis Siswa Sekolah Dasar. Scholaria: Jurnal Pendidikan Dan Kebudayaan, 11(1), 11–22. https://doi.org/10.24246/j.js.2021.v11.i1.p11-22

Demircioglu, T., & Ucar, S. (2015). Investigating the effect of argument-driven inquiry in laboratory instruction. Kuram ve Uygulamada Egitim Bilimleri, 15(1), 267–283. https://doi.org/10.12738/estp.2015.1.2324

Driver, Newton, & Osborne. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3). https://doi.org/https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A

Erdogan, I., Ciftci, A., & Topcu, M. S. (2017). Examination of the questions used in science lessons and argumentation levels of students. Journal of Baltic Science Education, 16(6), 980–993. https://doi.org/10.33225/jbse/17.16.980

Gereksinim, Y. (2015). STEM EĞİTİMİ “Günün Modası mı Yoksa Gereksinim mi?” İstanbul Aydın Üniversitesi.

Goodnough, K., & Cashion, M. (2006). Exploring problem-based learning in the context of high school science: Design and implementation issues. School Science and Mathematics, 106(7), 280–295. http://dx.doi.org/10.1111/j.1949-8594.2006.tb17919.x

Hacioglu, Y., & Gulhan, F. (2021). The Effects of STEM Education on the Stud ents ’ Critical Thinking Skills a nd To cite this article : The Effects of STEM Education on the Stud ents ’ Critical Thinking Skills and STEM Perceptions. Journal of Education in Science, Environment and Health, 7(2), 139–155. https://www.jeseh.net/index.php/jeseh/article/view/413/145

Hofstein, A., Eilks, I. & Bybee, R. (2011). SOCIETAL ISSUES AND THEIR IMPORTANCE FOR CONTEMPORARY SCIENCE EDUCATION—A PEDAGOGICAL JUSTIFICATION AND THE STATE-OF-THE-ART IN ISRAEL, GERMANY, AND THE USA. Int J of Sci and Math Educ, 9, 1459–1483. https://doi.org/https://doi.org/10.1007/s10763-010-9273-9

Leema K. Berland, B. J. R. (2010). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education Willey, 9(2). https://doi.org/https://doi.org/10.1002/sce.20420

Long, R., & Davis, S. (2017). Using STEAM to Increase Engagement and Literacy Across Disciplines. Steam, 3(1), 1–11. https://doi.org/10.5642/steam.20170301.07

Maslakhatunni’mah, D., Safitri, L. B., & Agnafia, D. N. (2019). Analisis Kemampuan Berpikir Kritis pada Mata Pelajaran IPA Siswa Kelas VII SMP. Seminar Nasional Pendidikan Sains 2019, 179–185.

Mater., et. a. (2020). The effect of the integration of STEM on critical thinking and technology acceptance model. Educational Studies. https://doi.org/https://doi.org/10.1080/03055698.2020.1793736

Ministry of National Education [MEB (Millî Eğitim Bakanlığı)]. (2018). Fen bilimleri dersi öğretim programı. [Science Curriculum]. http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=325

Minstrell, J., & van Zee, E. (2000). Inquiry into inquiry learning and teaching in science. American Association for the Advancement of Science.

NGSS Lead States. (2013). Next generation science standards: For States. The National Academies Press.

Novak, D. F. T. & Treagust (2018). Adjusting claims as new evidence emerges: Do students incorporate new evidence into their scientific explanations? Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 55(4), 427–449. https://doi.org/https://doi.org/10.1002/tea.21429

NRC. (1996). National Research Council [NRC]. National Academies Press.

Osborne, J. (2014). Teaching Critical Thinking? New Directions in Science Education. Perspective on Science Curriculum Journal, 10. https://www.physics.smu.edu/sdalley/quarknet/2015/2015QuarkNet_files/Physics Curriculum Constructs/ASE Teaching Critical Thinking in Science Education.pdf

Paul, R. W., & Elder, L. (2009). The miniature guide to critical thinking concepts & tools 6th ed. In CA:The Foundation for Critical Thinking. https://doi.org/10.1002/pfi.4170340606

Rehmat, Ab. P. (2015). ENGINEERING THE PATH TO HIGHER-ORDER THINKING IN ELEMENTARY EDUCATION : A PROBLEM-BASED LEARNING APPROACH FOR STEM INTEGRATION by Abeera Parvaiz Rehmat Bachelor of Science - Computer Science St . John ’ s University Master of Science - Elementary Educatio. August.

Rodriguez, A. J., & Berryman, C. (2002). Using sociotransformative constructivism to teach for understanding in diverse classrooms: a beginning teacher’s journey. American Educational Research Journal, 39(4), 1017–1045.

Sadler, T. D., Foulk, J. A., & Friedrichsen, P. J. (2017). Evolution of a model for socio-scientific issue teaching and learning. International Journal of Education in Mathematics, Science and Technology, 5(2), 75–87.

Starkman, N. (2007). Problem solvers. T H E Journal (Technological Horizons In Education), 34(10), 35+.

Stolz, M., Witteck, T., Marks, R., & Eilks, I. (2013). Reflecting socio-scientific issues for science education coming from the case of curriculum development on doping in chemistry education. Eurasia Journal of Mathematics, Science and Technology Education, 9(4), 361–370. https://doi.org/10.12973/eurasia.2014.945a

Swartz, R., Costa, A., Beyer, B., Reagan, R., & Kallick, B. (2007). Thinking based learning. Christopher-Gordon. Tarhan.

Topcu, M. S. (2010). Development of attitudes towards socioscientific issues scale for undergraduate students. Evaluation & Research in Education, 23(1), 51–67.

Warren & Fassett. (2015). Communication: A Critical/Cultural Introduction, Second Edition introduces communication, from intimate and interpersonal to the public and mediated, as cultural. Using contemporary critical theory. In Second Edition. SAGE Publication. https://books.google.co.id/books?id=sUMXBAAAQBAJ&printsec=frontcover#v=onepage&q&f=false

Yapıcıoğlu, A. E. (2021). An analysis of the outcomes of the Turkish science curriculum in terms of science process skills, nature of science, socio-scientific issues, and STEM: An analysis of …. International Journal of Curriculum and …, 13(2), 925–949.

Zeidler, D. L. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11–26. https://doi.org/10.1007/s11422-014-9578-z

Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357–377.


Article Metrics

Abstract view : 68 times | PDF view : 20 times

Refbacks

  • There are currently no refbacks.