Implementasi Metode Lalat Buah dalam Penjadwalan Ekonomis Pembangkit pada Sistem Tenaga Listrik

Haripuddin Haripuddin(1*), Muhammad Riska(2), Akhyar Muchtar(3),

(1) Universitas Negeri Makassar
(2) Universitas Negeri Makassar
(3) Universitas Negeri Makassar
(*) Corresponding Author



Abstract


Abstrak. Penyaluran energi listrik ke pusat-pusat beban membutuhkan biaya operasional pembangkitan energi listrik. Biaya pembangkitan energi listrik dari pembangkit tenaga listrik termal mahal karena menggunakan bahan bakar fossil. Oleh sebab itu, dalam penyaluran energi listrik dengan menggunakan pembangkit termal perlu dilakukan penjadwalan ekonomis pembangkit. Tujuan penjadwalan ekonomis pembangkit adalah menentukan luaran daya optimal dari unit-unit pembangkit untuk memenuhi kebutuhan permintaan beban dengan memenuhi beberapa batasan operasi untuk satu periode penyaluran daya dengan biaya operasi pembangkitan tenaga listrik yang dihasilkan paling minimum. Penelitian ini adalah penelitian kuantitatif yang bersifat deskriptif untuk mengeksplorasi kondisi pada objek penelitian. Data diolah dengan teknik dokumentasi berdasarkan data sistem standar IEEE 14 bus dan IEEE 62 bus. Metode optimasi yang digunakan untuk menyelesaikan masalah penjadwalan ekonomis pembangkit (ED) pada sistem pembangkit tenaga termal adalah menggunakan metode optimasi lalat buah (FOA) yang kemudian dibandingkan nilainya dengan metode optimasi Lagrange. Hasil simulasi menunjukkan bahwa metode optimasi FOA mampu menyelesaikan dan menentukan solusi terbaik dari penjadwalan ekonomis pembangkit sistem tenaga listrik yang menghasilkan nilai yang lebih kecil dari metode optimasi Lagrange sebagai metode pembanding dan waktu komputasi yang dibutuhkan cukup cepat untuk menemukan nilai terbaiknya.

 

Kata Kunci: Penjadwalan Ekonomis Pembangkit, Sistem IEEE 14 Bus, Sistem IEEE 62 Bus, Metode Lalat Buah (Metode FOA), Metode Lagrange

Full Text:

PDF

References


Abdelaziz, A. Y., Ali, E. S., & Abd Elazim, S. M. (2016). Flower Pollination algorithm to Solve Combined Economic and Emission Dispatch Problems. Engineering Science and Technology, an International Journal, 19(2), 980–990. https://doi.org/10.1016/j.jestch.2015.11.005

Apostolopoulos, T., & Vlachos, A. (2011). Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem. International Journal of Combinatorics, 2011, 1–23. https://doi.org/10.1155/2011/523806

Aurasopon, A., & Khamsen, W. (2019). An Improved Local Search Involving Bee Colony Optimization Using Lambda Iteration Combined With A Golden Section Search Method To Solve An Economic Dispatch Problem. Przeglad Elektrotechniczny, 95(1), 202–208. https://doi.org/10.15199/48.2019.01.49

Basu, M. (2011). Economic Environmental Dispatch Using Multi-Objective Differential Evolution. Applied Soft Computing Journal, 11(2), 2845–2853. https://doi.org/10.1016/j.asoc.2010.11.014

Bentouati, B., Chettih, S., & El-Sehiemy, R. A. (2017). A Chaotic Krill Herd Algorithm for Optimal Solution of the Economic Dispatch Problem. International Journal of Engineering Research in Africa, 31, 155–168. https://doi.org/10.4028/www.scientific.net/JERA.31.155

Chen, G., Li, C., & Dong, Z. (2017). Parallel and Distributed Computation for Dynamical Economic Dispatch. IEEE Transactions on Smart Grid, 8(2), 1026–1027. https://doi.org/10.1109/TSG.2016.2623980

Chen, J., & Imani Marrani, H. (2020). An Efficient New Hybrid ICA-PSO Approach for Solving Large Scale Non-Convex Multi Area Economic Dispatch Problems. Journal of Electrical Engineering and Technology, 15(3), 1127–1145. https://doi.org/10.1007/s42835-020-00416-7

Chiou, J. P. (2007). Variable Scaling Hybrid Differential Evolution for Large-Scale Economic Dispatch Problems. Electric Power Systems Research, 77(3–4), 212–218. https://doi.org/10.1016/j.epsr.2006.02.013

Devi, A. L., & Krishna, O. V. (2008). Combined Economic and Emission Dispatch Using Evolutionary Algorithms-A Case Study. Journal of Engineering and Applied Sciences, 3(6), 28–35.

El-Ela, A. A. A., El-Sehiemy, R. A., Rizk-Allah, R. M., & Fatah, D. A. (2018). Solving Multiobjective Economical Power Dispatch Problem using MO-FOA. Proceeding of International Middle East Power Systems Conference (MEPCON), (1), 19–24.

El-Sehiemy, R. A., Rizk-Allah, R. M., & Attia, A. F. (2019). Assessment of Hurricane versus Sine-Cosine Optimization Algorithms for Economic/Ecological Emissions Load Dispatch Problem. International Transactions on Electrical Energy Systems, 29(2), 1–14. https://doi.org/10.1002/etep.2716

Elsakaan, A. A., El-sehiemy, R. A., Kaddah, S. S., & Elsaid, M. I. (2018). An Enhanced Moth-Flame Optimizer for Solving Nonsmooth Economic Dispatch Problems with Emissions. Energy, 1–24. https://doi.org/10.1016/j.energy.2018.06.088

Gaurav Kumar Gupta, S. G. (2017). Particle Swarm Intelligence based Dynamic Economic Dispatch with Daily Load Patterns Including Valve Point Effect. IIEEE, 83–87.

Geruna, H. A., Rul, N., Abdullah, H., Asril, M. Z., Mustafa, M., Samad, R., & Dispatch, A. E. (2017). Fruit Fly Optimization ( FFO ) for Solving Economic Dispatch Problem in Power System. Proceeding of International Conference on System Engineering and Technology, 2–3.

Guang, C., Xiaolong, X., & Mengzhou, Z. (2018). Optimal Sitting and Parameter Selection for Fault Current Limiters Considering Optimal Economic Dispatch of Generators. IEEE Conference on Industrial Electronics and Applications (ICIEA), 2084–2088.

Ieng, S., Akil, Y. S., & Gunadin, I. C. (2019). Hydrothermal Economic Dispatch Using Hybrid Big Bang-Big Crunch (HBB-BC) Algorithm. Journal of Physics: Conference Series, 1198(5), 7–13. https://doi.org/10.1088/1742-6596/1198/5/052006

Jiang, X., Zhou, J., Wang, H., & Zhang, Y. (2013). Dynamic Environmental Economic Dispatch using Multiobjective Differential Evolution Algorithm with Expanded Double Selection and Adaptive Random Restart. International Journal of Electrical Power and Energy Systems, 49(1), 399–407. https://doi.org/10.1016/j.ijepes.2013.01.009

Jiejin, C., Xiaoqian, M., Lixiang, L., & Haipeng, P. (2007). Chaotic Particle Swarm Optimization for Economic Dispatch Considering the Generator Constraints. Energy Conversion and Management, 48(2), 645–653. https://doi.org/10.1016/j.enconman.2006.05.020

Jizhong, Z. (2013). Optimization of Power System Operation. In Journal of Chemical Information and Modeling (Vol. 53, pp. 1689–1699). IEEE Press. https://doi.org/10.1017/CBO9781107415324.004

Kaushal, R. K., & Thakur, T. (2020). Multiobjective Electrical Power Dispatch of Thermal Units with Convex and Non-Convex Fuel Cost Functions for 24 Hours Load Demands. International Journal of Engineering and Advanced Technology, 9(3), 1534–1542. https://doi.org/10.35940/ijeat.b4508.029320

Koodalsamy, C., & Simon, S. P. (2013). Fuzzified Artificial Bee Colony Algorithm for Nonsmooth and Nonconvex Multiobjective Economic Dispatch Problem. Turkish Journal of Electrical Engineering and Computer Sciences, 21(SUPPL. 1), 1995–2014. https://doi.org/10.3906/elk-1112-60

Li, C., De Bosio, F., Chen, F., Chaudhary, S. K., Vasquez, J. C., & Guerrero, J. M. (2017). Economic Dispatch for Operating Cost Minimization under Real-Time Pricing in Droop-Controlled DC Microgrid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(1), 587–595. https://doi.org/10.1109/JESTPE.2016.2634026

Liang, J., Zhang, H., Wang, K., & Jia, R. (2019). Economic Dispatch of Power System Based on Improved Fruit Fly Optimization Algorithm. Proceeding of International Conference on Industrial Electronics and Applications (ICIEA), 1360–1366.

M.Manjusha, S. F. (2016). Multi objective dynamic economic dispatch with cubic cost functions. International Research Journal of Engineering and Technology (IRJET), 3(6), 692–701.

Mei, J., & Zhao, J. (2018). An Enhanced Quantum-Behaved Particle Swarm Optimization for Security Constrained Economic Dispatch. Proceedings of International Symposium on Distributed Computing and Applications for Business Engineering and Science, (1), 221–224. https://doi.org/10.1109/DCABES.2018.00064

Nawaz, A., Mustafa, E., Saleem, N., Khattak, M. I., Shafi, M., & Malik, A. (2017). Solving Convex and Non-Convex Static and Dynamic Economic Dispatch Problems using Hybrid Particle Multi-Swarm Optimization. Tehnicki Vjesnik - Technical Gazette, 24(4), 1095–1102. https://doi.org/10.17559/tv-20150720093711

Nema, P., & Gajbhiye, S. (2014). Application of artificial intelligence technique to economic load dispatch of thermal power generation unit. International Journal of Energy and Power Engineering, 3(5), 15–20. https://doi.org/10.11648/j.ijepe.s.20140305.13

Nurlita Gamayanti, Abdullah Alkaff, A. K. (2015). Optimasi dynamic economic dispatch menggunakan algoritma artificial bee colony. JAVA Journal of Electrical and Electronics Engineering, 13(1).

Nwulu, N. (2018). Emission Constrained Bid Based Dynamic Economic Dispatch Using Quadratic Programming. International Conference on Energy, Communication, Data Analytics and Soft Computing, ICECDS, 213–216. https://doi.org/10.1109/ICECDS.2017.8389806

Sadoudi, S., Boudour, M., & Kouba, N. E. Y. (2019). Gravitational Search Algorithm for Solving Equal Combined Dynamic Economic-Emission Dispatch Problems in Presence of Renewable Energy Sources. Proceedings of the International Conference on Applied Smart Systems, ICASS, (November), 1–5. https://doi.org/10.1109/ICASS.2018.8652059

Saravanan, R., Subramanian, S., Dharmalingam, V., & Ganesan, S. (2017). Economic Dispatch with Integrated Wind-Thermal using Particle Swarm Optimization. International Journal of Advance Research and Innovation, 5(1), 100–103.

Singh, H. P., Brar, Y. S., & D. P.Kothari. (2019). Reactive Power Based Fair Calculation Approach for Multiobjective Load Dispatch Problem. Archives of Electrical Engineering, 68(4), 719–735. https://doi.org/10.24425/aee.2019.130679

Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003). Evolutionary Programming Techniques For Economic Load Dispatch. IEEE Transactions on Evolutionary Computation, 7(1), 83–94. https://doi.org/10.1109/TEVC.2002.806788

Sivasubramani, S., & Swarup, K. S. (2011). Environmental/Economic Dispatch using Multi-Objective Harmony Search Algorithm. Electric Power Systems Research, 81(9), 1778–1785. https://doi.org/10.1016/j.epsr.2011.04.007

Subathra, M. S. P., Easter Selvan, S., Aruldoss Albert Victoire, T., Hepzibah Christinal, A., & Amato, U. (2015). A Hybrid with Cross-Entropy Method and Sequential Quadratic Programming to Solve Economic Load Dispatch Problem. IEEE Systems Journal, 9(3), 1031–1044. https://doi.org/10.1109/JSYST.2013.2297471

Subramanian, R., Thanushkodi, K., & Prakash, A. (2013). An efficient meta heuristic algorithm to solve economic load dispatch problems. Iranian Journal of Electrical and Electronic Engineering, 9(4), 246–252.

Tyagi, N., Dubey, H. M., & Pandit, M. (2016). Economic load dispatch of wind-solar-thermal system using backtracking search algorithm. International Journal of Engineering, Science and Technology, 8(4), 16–27.

Wang, S.-K., Chiou, J.-P., & Liu, C.-W. (2007). Non-Smooth/Non-Convex Economic Dispatch by a Novel Hybrid Differential Evolution Algorithm. Generation, Transmission & Distribution, IET, 1(5), 793–803. https://doi.org/10.1049/iet-gtd:20070183

Xiong, G., Zhang, J., Yuan, X., Shi, D., He, Y., Yao, Y., & Chen, G. (2018). A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China. Complexity, 2018. https://doi.org/10.1155/2018/2591341

Zakaria, Z., Rahman, T. K. A., & Hassan, E. E. (2014). Economic Load Dispatch via an Improved Bacterial Foraging Optimization. International Power Engineering and Optimization Conference, 380–385.

Zheng, X., Wang, L., & Wang, S. (2014). An Enhanced Non-Dominated Sorting Based Fruit Fly Optimization Algorithm for Solving Environmental Economic Dispatch Problem. Proceeding of Congress on Evolutionary Computation, 626–633.

Ziane, I., Benhamida, F., & Graa, A. (2017). Simulated Annealing Algorithm for Combined Economic and Emission Power Dispatch using Max/Max Price Penalty Factor. Neural Computing and Applications, 28, 197–205. https://doi.org/10.1007/s00521-016-2335-3


Article Metrics

Abstract view : 177 times | PDF view : 37 times

Refbacks

  • There are currently no refbacks.