POTENSI NANOPARTIKEL ALGINAT- KITOSAN - EKSTRAK DAUN KEDONDONG HUTAN (SPONDIAS PINNATA (L.f.) Kurz.) DALAM PENATALAKSANAAN TUBERKULOSIS DAN MULTI DRUG RESISTANCE TUBERCULOSIS (MDR-TB)

Ni Made Gitari(1*), I Gusti Ngurah Bagus(2), Ida bagus Nyoman Putra(3),

(1) Universitas Udayana Bali
(2) Universitas Udayana Bali
(3) Universitas Udayana Bali
(*) Corresponding Author




DOI: https://doi.org/10.26858/ijfs.v3i2.4785

Abstract


Tuberkulosis (TB) merupakan penyakit infeksi akibat M.tuberculosis yang mengakibatkan morbiditas dan mortalitas yang tinggi. Merebaknya strain M. tuberculoisis yang resisten terhadap obat anti tuberkulosis membuat penanganan TB menjadi semakin sulit dan beban ekonomi yang tinggi. Tujuan dari penulisan paper gagasan tulis ini untuk mendeskripsikan potensi nanopartikel alginat-kitosan-ekstrak daun kedondong hutan sebagai penatalaksanaan TB dan MDR-TB. Dari 87 jurnal yang ditelaah, 50 jurnal ditemukan sesuai dengan topik bahasan dan digunakan sebagai referensi karya ini. Kombinasi penyalutan alginat-kitosan merupakan kombinasi yang paling tepat karena dapat meningkatkan bioavailabilitas dan pelepasan berkelanjutan dari obat antibakteri. Nanopartikel alginat-kitosan-ekstrak daun kedondong hutan dapat menghambat sintesis asam mikolat  M. tuberculosis, proteasom dan mengakibatkan lisis dinding sel M. tuberculosis. Ekstrak daun kedondong hutan mengandung senyawa flavonoid dan triterpenoid yang berfungsi sebagai antituberkulosis. Flavonoid dapat berikatan dengan situs aktif HadB sehingga menghambat aktivitas enzim β-hydroxyacyl-ACP dehydratase yang berfungsi dalam elongasi rantai meromycolic. Selain itu, flavonoid dapat menghambat proteasom M. tuberculosis yang dalam keadaan dorman. Triterpenoid memiliki gugus sehingga mampu mengakibatkan lisis dinding sel M. tuberculsosis. Nanopartikel alginat-kitosan-ekstrak daun kedondong hutan memiliki potensi sebagai terapi baru untuk TB dan MDR-TB. Belum terdapat penelitian mengenai kombinasi modalitas ini sehingga diperlukan penelitian lebih lanjut untuk mengetahui potensi pasti nanopartikel alginat-kitosan-ekstrak daun kedondong hutan.


Full Text:

PDF

References


Ahmad S, Mokaddas E. 2009. Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Respir Med [Internet]. Elsevier Ltd; 103(12):1777–90. Tersedia di: http://dx.doi.org/10.1016/j.rmed.2009.07.010

Bauman RW. 2012. Microbiology : with Disease by Body System. 692-693 p.

Belardinelli JM. 2013. Recycling and refurbishing old antitubercular drugs : the encouraging case of inhibitors of mycolic acid biosynthesis.

Brown AK, Papaemmanouil A, Bhowruth V, Bhatt A, Dover LG, Besra GS. 2017. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636 , a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II. (2007):3314–22.

Cantaloube S, Veyron-churlet R, Haddache N, Daffe M. 2011. The Mycobacterium Tuberculosis FAS-II Dehydratases and Methyltransferases Define the Specificity of the Mycolic Acid Elongation Complexes. 6(12).

Chan ES, Yim ZH, Phan SH, Mansa RF, Ravindra P. 2010. Encapsulation of herbal aqueous extract through absorption with ca-alginate hydrogel beads. Food Bioprod Process, 88:195–201.

De S, Robinson D. 2003. Polymer relationships during preparation of chitosan–alginate and polyl-lysine–alginate nanospheres. J Control Release, 89(1):101–12.

Ding P, Li X, Jia Z, Lu Z. 2017. Multidrug-resistant tuberculosis ( MDR-TB ) disease burden in China : a systematic review and spatio-temporal analysis. BMC Infect Dis [Internet]. BMC Infectious Diseases, 1–30. Tersedia di: http://dx.doi.org/10.1186/s12879-016-2151-5

Dong Y, Qiu X, Shaw N, Xu Y, Sun Y, Li X, et al. 2015. Molecular basis for the inhibition of β -hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by fl avonoid inhibitors. Protein Cell. Higher Education Press, 6(7):504–17.

Dustgani A, Farahani E, Imani M. 2008. Preparation of Chitosan Nanoparticles Loaded by Dexamethasone Sodium Phospate. Iran J Pharm Sci, 4(2):111–4.

Europe E. 2008. Multidrug resistant to extensively drug resistant tuberculosis : What is next ?. 33(November):605–16.

Faso B, Africa W, Mourfou A, Oue F, Sawadogo I. 2009. Risk Factors for Multidrug-Resistant Tuberculosis. 15(3).

Garg T, Goutam R, Amit KG. 2015. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif Cells, Nanomedicine, Biotechnol, 1–5.

Ginsberg AM. 2010. Drugs in Development for Tuberculosis.70(17):2201–14.

Gupta R, Thakur B, Singh P, Singh HB, Sharma VD, Katoch VM. 2010. Anti-tuberculosis activity of selected medicinal plants against multi- drug resistant Mycobacterium tuberculosis isolates. 809–13.

Honary S, Maleki M, Karami M. 2009. The Effect of Chitosan Molecular Weighton the Pro-perties of Alginate/Chitosan Microparticles

Containing Prendisolone. Trop J Pharm Res, 8(1):53–61.

Ikram S, Ahmed S. 2017. Natural Polymers. Hauppauge Nov Sci Publ Inc.

Iswanda R, Anwa E, Jufri M. 2013. Formulasi Nanopartikel Verapamil Hidroklorida dari Kitosan dan Natrium Tripolifosfat dengan Metode Gelasi Ionik. J Farm Indones, 6(4).

Jain P, Hossain KR, Mishu TR, Reza HM. (2014). Antioxidant and Antibacterial Activities of Spondias pinnata Kurz . Leaves. 4(2):183–95.

Jeon D, Jeong M, Jnawali HN, Kwak C, Ryoo S, Jung ID, et al. 2017. Phloretin Exerts Anti-Tuberculosis Activity and Suppresses Lung Inflammation.

Jim A, Meckes M, Torres J, Luna-herrera J. 2007. Antimycobacterial triterpenoids from Lantana hispida ( Verbenaceae ). 111:202–5.

Jiménez-Arellanes A, Meckes M, Torres J, Luna-Herrera J. 2007. Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae). J Ethnopharmacol. 111(2):202–5.

Kunwar RM, Shrestha KP, Bussmann RW. 2010. Traditional herbal medicine in Far-west Nepal : a pharmacological appraisal. J Ethnobiol Ethnomed [Internet]. BioMed Central Ltd, 6(1):35. Tersedia di: http://www.ethnobiomed.com/content/6/1/35

Labu Z, Laboni F, Tarafdar M, Howlader M, Rashid M. 2015. Membrane Stabilization as a Mechanism of Antiinflammatory and Thrombolytic Activities of Ethanolic Extract of Aerial Parts of Spondias Pinnata (Family :Anacardiaceae).2:44–51.

Lee S, Koo H, Jeong H, Huh M, Choi Y, Jeong S, et al. 2011. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control release, 152(1):9–21.

Lin Y. 2014. Seasonal dynamics of tuberculosis epidemics and implications for multidrug-resistant infection risk assessment. 358–70.

Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. 2008. Polysaccharides-Based Nanoparticles as Drug Delivery Systems. Adv Drug Deliv Rev, 60:1650–62.

Long R, Langlois-klassen D. 2013. Increase in Multidrug-resistant Tuberculosis (MDR-TB) in Alberta Among Foreign-born Persons: Implications for Tuberculosis Management. 104(1).

López-garcía S, Castañeda-sanchez JI, Jiménez-arellanes A, Domínguez-lópez L, Castro-mussot ME, Hernández-sanchéz J, et al. 2015. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection. 2:14348–64.

Lu X, Zhu T, Chen C, Liu Y. 2014. Right or Left : The Role of Nanoparticles in Pulmonary Diseases. 17577–600.

Macedo R, Fernandes E, Brum L. 2008. Multidrug-Resistant Tuberculosis in Lisbon, Portugal : 14(2).

Mag P, Chaudhuri D, Ghate NB, Singh SS, Mandal N. 2015. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal ‑ regulated kinase 1 / 2 activation. 11(42).

Morgen M, Bloom C, Beyerinck R, Bello A, Song W, Wilkinson K, et al. 2012. Polymeric Nanoparticles for Increased Oral Bioavailability and Rapid Absorption Using Celecoxib as a Model of a Low- Solubility , High-Permeability Drug. 427–40.

Nasiruddin M, Neyaz M, Das S. 2017. Nanotechnology-Based Approach in Tuberculosis Treatment. Tuberculosis research and treatment.

Ngo D, Vo T, Ngo D, Kang K, Je J, Pham H, et al. 2014. Biological effects of chitosan and its derivatives. Food Hydrocoll, 51:200–16.

Olugbuyiro JAO, Moody JO, Hamann MT. 2009. AntiMtb activity of triterpenoid-rich fractions from Spondias mombin L . 8(9):1807–9.

Purwani S, Ariantari N, Kardena I. 2013. Pengaruh Pemberian Ekstrak Etanol 80% Daun Kedondong Hutan Terhadap Berat Organ Hati Mencit Jantan Galur Balb/c. J udayana. 2(3).

Rudzinski WE, Aminabhavi TM. 2010. Chitosan as a carrier for targeted delivery. Int J Pharm, (399):1–11.

Savitri L, Ariantari N. 2013. Potensi Antituberkulosis Ekstrak n-heksana Daun Kedondong Hutan (Spondias pinnata (Lf) Kurz.). Jurnal Farm Udayana, 2(3).

Silva D, Araújo AR, Al. E. 2012. Chemical composition, antioxidant and antibacterial activities of two Spondias species from

Northeastern Brazil. Pharm Biol, 50(6):740–6.

Skrahina A, Hurevich H, Zalutskaya A, Sahalchyk E, Astrauko A, Hoffner S, et al. 2013. Multidrug-resistant tuberculosis in Belarus : the size of the problem and associated risk factors. (October 2012):36–45.


Article Metrics

Abstract view : 1944 times | PDF view : 668 times

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.