The Effect of Binder Concentration on the Ability of Gelcasting Porous Ceramics as TiO2 Support Catalysts

Suriati Eka Putri(1*), Diana Eka Pratiwi(2), Rachmat Triandi Tjahjanto(3), Abd. Rahman(4),

(1) University Negeri Makassar
(2) University Negeri Makassar
(3) Universitas Brawijaya
(4) University Negeri Makassar
(*) Corresponding Author



Abstract. This study aims to determine the effect of binder concentration on the ability of porous ceramics as TiO2 support catalyst. The porous ceramic synthesis used was the gelcasting method using natural clay as matrix, cassava starch as binder and CMC as dispersant. The concentration of cassava starch binder used were 2%, 4%, 6%, 8%, 10%. The methods used in catalyst supporting are adsorption method and sol gel coating method. Analysis of TiO2 catalyst content in porous ceramics using XRF instrument. The results obtained showed that the concentration of cassava starch affects the ability of porous ceramics as TiO2 catalyst support. The largest percentage of TiO2 catalyst with adsorption method was achieved at a binder concentration of 8% with a catalyst percentage of 38.9% while with sol gel coating method was achieved at a binder concentration of 4% with a catalyst percentage of 20.11%.


Keywords: Binder, Cassava Starch, Porous Ceramic, Gelcasting, Support Catalysts


Binder, Cassava Starch, Porous Ceramic, Gelcasting, Support Catalysts

Full Text:



Alag H. K. and R. S. Zamel. (2018). “Studying the Properties of Porous Alumina Using Starch as a Binder,” J. Al-Nahrain Univ. Sci., vol. 21, no. 3, pp. 112–118, 2018, doi: 10.22401/jnus.21.3.13.

Barmeh A., M. R. Nilforoushan, and S. Otroj. (2019) “Photocatalytic and self-cleaning properties of glazed ceramic tiles coated with TiO2 and Al-doped TiO2 thin films,” J. Aust. Ceram. Soc., vol. 55, no. 4, pp. 1091–1097, 2019, doi: 10.1007/s41779-019-00322-w.

Dhara S., R. K. Kamboj, M. Pradhan, and P. Bhargava. (2002). Shape forming of ceramics via gelcasting of aqueous particulate slurries. Bull. Mater. Sci., vol. 25, no. 6, pp. 565–568, 2002, doi: 10.1007/BF02710552.

Harefa F. B. (2009). Pemanfaatan Limbah Padat Pulp Grits Dan Dregs Dengan Penambahan Kaolin Sebagai Bahan Pembuatan Keramik Konstruksi.

Ismagilov Z. R. (1997) “Porous alumina as a support for catalysts and membranes. Preparation and study,” React. Kinet. Catal. Lett., vol. 60, no. 2, pp. 225–231, 1997, doi: 10.1007/BF02475683.

Jamaludin A. R., S. R. Kasim, A. K. Ismail, M. Z. Abdullah, and Z. A. Ahmad. (2015) “The effect of sago as binder in the fabrication of alumina foam through the polymeric sponge replication technique,” J. Eur. Ceram. Soc., vol. 35, no. 6, pp. 1905–1914, 2015, doi: 10.1016/j.jeurceramsoc.2014.12.005.

Jamaludin A. R., S. R. Kasim, M. Z. Abdullah, and Z. A. Ahmad. (2014) “Sago starch as binder and pore-forming agent for the fabrication of porcelain foam,” Ceram. Int., vol. 40, no. 3, pp. 4777–4784, 2014, doi: 10.1016/j.ceramint.2013.09.023.

Julbe A., D. Farrusseng, and C. Guizard. (2001) “Porous ceramic membranes for catalytic reactors - Overview and new ideas,” J. Memb. Sci., vol. 181, no. 1, pp. 3–20, 2001, doi: 10.1016/S0376-7388(00)00375-6.

Kishimoto T. and H. Kozuka. (2003) “Sol-gel preparation of TiO2 ceramic coating films from aqueous solutions of titanium sulfate (IV) containing polyvinylpyrrolidone,” J. Mater. Res., vol. 18, no. 2, pp. 466–474, 2003, doi: 10.1557/JMR.2003.0059.

Li H. Y. et al.. (2007) “Photo-Catalytic Properties of Ceramic Coating of TiO2,” Key Eng. Mater., vol. 336–338, pp. 1901–1903, 2007, doi: 10.4028/

Liu Y. F., X. Q. Liu, G. Li, and G. Y. Meng. (2001). Low cost porous mullite-corundum ceramics by gelcasting,” J. Mater. Sci., vol. 36, no. 15, pp. 3687–3692, 2001, doi: 10.1023/A:1017961414108.

Mongkolkachit C., Wanakitti S., and Aungkavattana P. (2010). Investigation of Extruded Porous Alumina for High Temperature Construction. Mater. Technol., vol. 20, no. 3, pp. 123–125.

Musa M. A., J. M. Juoi, Z. Mohd Rosli, and N. D. Johar. (2017) “Characterization of TiO2 coating deposited on ceramic substrate,” Solid State Phenom., vol. 264 SSP, no. September, pp. 38–41, 2017, doi: 10.4028/

Putri S. E. (2013) “Pengaruh Perbandingan monomer AM dan Crosslinker MBAM pada Pembuatan Keramik Berpori Secara Gelcasting Dengan Bahan Dasar Lumpur Lapindo The Influence of Ratio AM Monomer and MBAM Crosslinker on Synthesis of Porous Ceramic by Gelcasting Method Using Lapin,” pp. 38–45,

Putri E., D. E. Pratiwi, R. Triandi, D. Mardiana, and S. Side. (2018). “Performance Test of Gelcasted Porous Ceramic as Adsorbent of Azo Dyes,” J. Phys. Conf. Ser., vol. 1028, no. 1, 2018, doi: 10.1088/1742-6596/1028/1/012039.

Putri S. E. and D. E. Pratiwi. (2016). The Effect of Mole Ratio of Acrylamide (AM) Monomer and Methylene-bis-acrylamide (MBAM) Crosslinker Toward the Hardmess of Gelcasting Porous Ceramics,” Proceeding Int. Conf. Math. Sci. Technol. Educ. their Appl., vol. 1, no. 1, pp. 412–415, 2016.

Ramlan R. (2009). Pemanfaatan Karet Busa (Spons) Sebagai Model Cetakan pada Pembuatan Keramik Berpori. J. Penelit. Sains, vol. 12, no. 2, pp. 1–4.

Shakeri A., D. Yip, M. Badv, S. M. Imani, M. Sanjari, and T. F. Didar. (2018) “Self-cleaning ceramic tiles produced via stable coating of TiO2 Nanoparticles,” Materials (Basel)., vol. 11, no. 6, 2018, doi: 10.3390/ma11061003.

Sukania I. W. (2007). Seminar Nasional Mesin dan Industri (SNMI3) 2007. pp. 67–72.

Tambunan T. D. (2008). Pembuatan Keramik Berpori Sebagai Filter Gas Buang Dengan Aditif Karbon Aktif. Univ. Sumatera Utara, 2008.

Wan W., C. e. Huang, J. Yang, and T. Qiu. (2014) “Study on Gelcasting of Fused Silica Glass Using Glutinous Rice Flour as Binder,” Int. J. Appl. Glas. Sci., vol. 5, no. 4, pp. 401–409, 2014, doi: 10.1111/ijag.12060.

Wang W. Y., A. Irawan, and Y. Ku. (2008) “Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube,” Water Res., vol. 42, no. 19, pp. 4725–4732, 2008, doi: 10.1016/j.watres.2008.08.021.

Yang Z., N. Chen, and X. Qin. (2018). Fabrication of porous Al2O3 ceramics with submicron-sized pores using awater-based gelcasting method,” Materials (Basel)., vol. 11, no. 9. doi: 10.3390/MA11091784.

Article Metrics

Abstract view : 72 times | PDF view : 18 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.