PERBANDINGAN METODE PCA-SVM DAN SVM UNTUK KLASIFIKASI INDEKS KEPUASAN MASYARAKAT TERHADAP LAYANAN PENDIDIKAN DI KABUPATEN JENEPONTO

Nur Ikhwana(1*), Muhammad Nusrang(2), Sudarmin Sudarmin(3),

(1) Prodi Statistika, FMIPA, Universitas Negeri Makassar
(2) Prodi Statistika, FMIPA, Universitas Negeri Makassar
(3) Prodi Statistika, FMIPA, Universitas Negeri Makassar
(*) Corresponding Author




DOI: https://doi.org/10.35580/variansiunm22988

Abstract


Support Vector Machine (SVM) is one of the classification methods used to find the best hyperplane by maximizing the distance between classes. SVM aims to build a model that can predict the given test data. The SVM method can be implemented easily and the testing time is short, but it needs to reduce the computation burden. One way that can be done is to perform feature extraction to get the main characteristics of the data. The method that can be used to extract features is Principal Component Analysis (PCA). PCA is used to reduce the dimensions of data which are generally used in numerical scale data. If the data in the study used categorical data, then the PCA used was Nonlinear PCA. The data used in this study is the Community Satisfaction Survey data in Jeneponto Regency. This study compares the PCA-SVM and SVM methods for the classification of the Jeneponto Regency Community Satisfaction Index. The overall PCA-SVM classification results are better than SVM with 100% accuracy.


Full Text:

PDF

References


Annas, S., Kanai, T., & Koyama, S. 2008. Principal Component Analysis and Self-Organizing Map for Visualizing and Classifyng Fire Risks in Forest Regions. Agricultural Information Reasearch, 16 (2). 44-51

Awad, M., & Khanna, R. 2015. Efficient Learning Machines: Theories, Concepts, Applications for Engineers and System Designers. Apress.

Chung, H. M., Gray, P., & Mannino, M. 2005. Introduction to Data Mining and Knowledge Discovery. https://doi.org/10.1109/hicss.1998.648318

Faisal, M. R. 2016. Seri Belajar Data Science: Klasifikasi dengan Bahasa Pemrograman R. In Indonesia Net Developer Community (Issue February).

Firdaus. 2017. Penerapan Metode Support Vector Machine pada Klasifikasi Jenis Keganasan Kanker Payudara. Skripsi. Universitas Negeri Makassar. Makassar.

Gifi A. 1990. Nonlinear Multivariate Analysis. Chichester, England: John Wiley and Sons.

Gunn, S. R. 1998. Support Vector Machines for Classification and Regression. Southampton: University of Southampton.

Hestie, T., Tibshirani, R., & Friedman, J. 2001. The Elements of Statistical Learning Data Mining, Inference, and Prediction. California: Springer

Johnson, R. A., & Wichern, D. W. 2007. Applied Multivariate Analysis (6th Edition). Prentice Hall: New Jersey

Jolliffe, I. T. 2002. Principal Component Analysis, Second Edition. Encyclopedia of Statistics in Behavioral Science, 30(3), 487.

https://doi.org/10.2307/1270093

Khamparia, A., & Pandey, B. 2018. SVM and PCA Based Learning Feature Classification Approaches for E-Learning System. International Journal of Web-Based Learning and Teaching Technologies, 13.

Koesriputranto, A. (2015). Prediksi Harga Saham Di Indonesia Dengan Menggunakan Metode Hybrid Principal Component Analysis dan Support Vector Machine (PCA-SVM). 1–80.

Linting M, Meulman JJ, Groenen PJF, Van der Kooij JJ. 2007. Nonlinear Principal Components Analysis: Introduction and Application. Psychological Methods. 12: 336-358.

Markos, A.I., Vozalis, M.G. & Margaritis, K.G. 2010. An Optimal Scaling Approach to Collaborative Filtering Using Categorical Principal Component Analysis and Neighbohood Formation. IFIP Advances in Information and Communication Technology. 339.22-29. Springer.

Menteri Pendayagunaan Aparatur Negara dan Reformasi Birokrasi. 2017, Mei 16. Pedoman Penyusunan Survei Kepuasan Masyarakat Unit Penyelenggara Pelayanan Publik. Februari 22, 2021.

https://jdih.menpan.go.id/data_puu/permen%2014%202017.pdf

Ningrum, H. C. S. 2018. Perbandingan Metode Support Vector Machine (SVM) Linear, Radial Basis Function (RBF), dan Polinomial Kernel dalam Klasifikasi Bidang Studi Lanjut Pilihan Alumni UII. Statistics UII.

Nugroho, A. S. 2003. Support Vector Machine Teori dan Aplikasinya dalam Bioinformatika. In Kuliah Umum Ilmu Komputer. http://asnugroho.net

Novianti, F.A & Purnami, S.W. 2012. Analisis Diagnosis Pasien Kanker Payudara Menggunakan Regresi Logistik dan Support Vector Machine (SVM) Berdasarkan Hasil Mamografi. Jurnal Sains dan Seni ITS, 1(1).

Rachman, F & Purnami, S.W. 2012. Klasifikasi Tingkat Keganasan Breast Cancer dengan Menggunakan Regresi Logistik Ordinal dan Support Vector Machine (SVM). Jurnal Sains dan Seni ITS, 1(1).

Recher, A. C. 2002. Methods of Multifariate Analysis. Canada: John Willey and Sons Ltd.

Santosa, B. 2007. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Graha Ilmu: Yogyakarta.

Supranto, J. 2004. Analisis Multivariat: Arti dan Interpretasi. Jakarta: PT Asdi Mahasatya.

Utami, T. W., & Arianti, I. 2020. Principal Component Analysis Support Vector Machine (PCA-SVM) Untuk Klasifikasi Kesejahteraan Rumah Tangga Di Kabupaten Brebes. Proceeding SENDIU, 978–979.

https://www.unisbank.ac.id/ojs/index.php/sendi_u/article/view/7969/2932

Vapnik, V & Cortes, C. 1995. Support Vector Networks. Machine Learning, 20, 273-297

Ye, A. 2020, Agustus. Beyond Ordinary PCA: Nonlinear Principal Component Analysis. Mei 17, 2021. Toward Data Science.


Article Metrics

Abstract view : 692 times | PDF view : 268 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Nur Ikhwana

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Abstracted/Indexed by:

SINTADimensions

 

 

VARIANSI: Journal of Statistics and Its Application on Teaching and Research is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)