Usman Mulbar ${ }^{\text {* }}$, Nasrullah ${ }^{2}$
${ }^{1}$ Mathematics Education/Universitas Negeri Makassar
Email: u_mulbar@unm.ac.id
${ }^{2}$ Mathematics Education/Universitas Negeri Makassar Institusi/Universitas
Email: nasrullah@unm.ac.id

Abstract

This study aims to explore what students' mathematical literacy skills look like through a series of opportunity to learn provided in the form of context-based questions. This activity was carried out at MTsN 1 Polewali Mandar in grade VII D students. The research instruments used included mathematical literacy tests, interview guidelines, and student work artifacts. The data collected was processed using content analysis techniques based on conceptual and correlational analysis. The results show that opportunity to learn can be prepared in the form of context-based math problems. Through such questions, students experience a learning process that supports the development of their mathematical literacy skills. This development can be seen from the ability of students to use their knowledge and reasoning in utilizing mathematical concepts to solve the given problems. Not all students can achieve the best level in learning mathematics. This is influenced by two factors, both internally and externally. Internal constraints can be in the form of misconceptions, inaccuracy, lack of knowledge and learning experience, and lack of initiative. Meanwhile, external constraints can be in the form of a conducive learning environment.

Keywords: Opportunity to learn; Context-Based Questions; Mathematical Literacy Ability.

INTRODUCTION

Opportunity to learn is the concept that fundamentally plays an important role in the progress of students. The concept of the relationship between mathematical literacy and opportunity to learn proposed by Hwang \& Ham (2021) where opportunity to learn with procedural tasks can improve mathematical literacy and are indirectly related to self-control. Mathematical literacy ability is a basic ability needed to solve mathematical problems, especially those related to numbers, data, and mathematical symbols (Lange, 2015).
However, students' mathematical literacy skills are still a problem, especially students in Indonesia. Based on PISA, the results of the search for the mathematical literacy ability of Indonesian students are still low. In 2012, Indonesia was ranked 64th out of 65 countries, with a score of 375 , while the international score was 494 . The results of the 2018 PISA math test, which was followed by 15-yearold junior high school students, showed that Indonesia was ranked 73 rd out of 78 countries, Indonesia shows a score of 379 out of an average score of 489 (Siew et al., 2015).
According to Wijaya et al. (2015), not only one factor that influences why student achievement is only at that level, namely a curriculum with low emphasis on basic concepts, textbooks that are not rich in presentation, and limited involvement of representational models for practice in the classroom. For the first factor, (Goldhaber \& Brewer, 1996) suggests that the curriculum used in schools is a reference whose content ensures a learning process on the concept of learning has been given to students by established competency standards. Regarding textbooks, it is time for the content presented in them the form enriched concepts and learning. It is not uncommon for students to make mistakes and misconceptions because of the multiple meanings of a mathematical concept ($\mathrm{Ni} \& \mathrm{Zhou}, 2005$). The representation model is a school resource that is supportive of learning activities, even the limited

ICSAT INTERNATIONAL PROCEEDING

ISBN: 978-623-7496-62-5
Vol, 11 Issue 4
resources are part of the limiting quality of instructional programs (Oakes, 1989). This is what needs attention in the exposure of learning and instructional strategies in the classroom.
Learning exposures and learning instructions given to students are input as well as processes that are prepared for students to be involved in activities designed in such a way that they can achieve the expected learning goals (Elliott \& Bartlett, 2021). The involvement of students in learning activities that are applied in the classroom is the expected impact of preparing opportunity to learn. The response to the opportunity to learn provided is a form of activity that leads to better academic outcomes. If this happens it can be assumed that students make good use of or the exposure to learning and instruction provided interact well (Walshaw, 2012).
Challenges in learning activities, one of which is to get students involved with the activities prepared. Class or school is a space or time prepared for students to get a learning experience (Cogan \& Schmidt, 2015). The preparation of activities means in this case that students take advantage of the opportunity to learn provided through exposure to learning materials and follow up on the teaching instructions delivered. However, the extent to which students can demonstrate their mathematical literacy skills can be said that they have taken advantage of the opportunity to learn provided to build mathematical literacy. For this reason, this article will examine the description of mathematical literacy skills possessed through a series of opportunity to learn in the form of mathematical problems is given.

METHOD

This type of research is descriptive qualitative research that aims to describe students' numeracy literacy skills in terms of student opportunity to learn. The research subjects were students of class VII D MTsN 1 Polewali Mandar in the odd semester of the 2022/2023 academic year. They were selected based on the responses given through the learning activity questionnaire and the results of the work on the problem of numeracy literacy. To support exploration, interviews were also conducted to obtain information from research subjects.
For test materials, the forms used are multiple-choice, complex multiple-choice, description, and brief description, where the subject is expected to be able to express ideas to solve problems in written form. The content of the test is in the form of literacy contexts related to personal, socio-cultural, and scientific contexts. The indicators for measuring numeracy literacy skills in this study are as follows: 1) Students can understand facts, procedures, and mathematical tools, 2) Students can reason to solve complex and non-routine problems based on their mathematical concepts, 3) Students can apply mathematical knowledge owned in different contexts. As for the interview activities, the pattern used is semi-structured by revealing in-depth and complete data about the subject's mathematical literacy ability.
For data analysis, the research results obtained were then processed and analyzed using content analysis based on conceptual analysis and relational analysis between what students wrote in the form of artifacts and the results of interviews conducted (Yin, 2015). Thus, the presentation of the data in the results of this study describes the results of students' work on the given mathematical literacy questions and interview excerpts.

RESULT AND DISCUSSION

Result

In this study, the research subjects involved were given 3 questions related to numeracy literacy. The topics raised in this research are the School Canteen and New School Year Discounts, where the second theme contains 2 questions. The numerical literacy test questions used in this study are as follows.

ICSAT INTERNATIONAL PROCEEDING
ISBN: 978-623-7496-62-5
Vol, 11 Issue 4

Problem 1 School Shop

The principal of MTsN 1 Polewali Mandar will renovate a school shop. The work of the shop requires 5 workers in 15 days. For the work on the shop to be completed within 5 days, the workers needed are...

Problem 2 New School Year Discount
Ahead of the new school year, some stores are giving big discounts. The following table shows a list of prices and discounts at some stores. All these shops sell the same goods.

Store Name	Discount		Unit price	
	Slippers	Shoes	Slippers	Shoes
Adi	15%	30%	Rp. 45.000,00	Rp. 70.000,00
Ina	20%	25%	Rp. 45.000,00	Rp. 70.000,00
Ana	25%	20%	Rp. 45.000,00	Rp. 70.000,00
Ali	30%	15%	Rp. 45.000,00	Rp. 70.000,00

Based on the text above, determine whether the following statements are true or false!

| Statements | True False |
| :--- | :---: | :---: |
| The most expensive unit price for sandals is at Adi's store | |
| The difference in the unit price of shoes at Ali and Ana's shop is Rp. | |
| $5,000.00$ | |

Problem 3 Based on the discount table above!
Zea has Rp. 100,000.00 and want to buy one sandal and one shoe. To get the most of the remaining money, in which stores should Zea shop?

ICSAT INTERNATIONAL PROCEEDING

ISBN: 978-623-7496-62-5
Vol, 11 Issue 4
A. Adi and Ina
B. Adi and Ana
C. Ali and Ina
D. Ali and Adi

Of the three questions given to the subjects in this study, their responses are described as follows.
Table 1. The First subject's Answer and Interview Excerpts

ICSAT INTERNATIONAL PROCEEDING
ISBN: 978-623-7496-62-5
Vol, 11 Issue 4

> I: try to re-check the price of the shoes, the period is more expensive after the discount because the normal price is 70,000
> S1: I counted myself later because there were so many zeros I might have miscalculated
> I: try to count again
> S1: sorry not 490,000 but 49,000 . So, sandals at Ali's shop are the cheapest because the price is 33,650 then the price of shoes at Adi's shop is the cheapest because the price is 49,000
> I: means the answer?
> S1: D, Ali, and Adi

Table 2. The Second subject's Answer and Interview Excerpts

Table 3. The Third subject's Answer and Interview Excerpts

Subject	Item Number	
3	1	$x=\frac{15}{5} \times 5$

ICSAT INTERNATIONAL PROCEEDING

ISBN: 978-623-7496-62-5
Vol, 11 Issue 4

Argumentation I : Pay attention to question number 3, can you explain what was the first thing you thought after reading question number 3 ?
S3: What does S3 mean?
I : After reading the problem, you will think about how to solve this problem
S3: I don't understand
I: What is the reason for choosing C?
S3: I just chose S3 because I know Adi is the most expensive, so I choose the one without Adi's name
I : why do you think Adi is the most expensive?
S3: Because the discount at Adi's shop is 15\% at least
P: oh yeah

Discussion

From the results of the research obtained stated above, the 3 numbers of mathematical literacy questions given received different responses based on their understanding of mathematical concepts.

ICSAT INTERNATIONAL PROCEEDING

ISBN: 978-623-7496-62-5
Vol, 11 Issue 4

For question number 1, the three subjects given the question target that the number of workers needed is 15 people. The first subject stated that the concept used was to use value comparisons, while the second and third subjects described how the concepts of multiplication and division were involved in solving the given problem. Although subjects 1 and 3 started their solution by using the same form of a mathematical expression, the execution process was not in line with that mathematical form. This is what often happens in students' understanding, known as misconceptions about mathematical concepts. It is stated that it is not uncommon for students to make mistakes and misconceptions because of the multiple meanings of a mathematical concept (Ni \& Zhou, 2005). Mulbar \& Nasrullah (2014) suggest that this misconception can be corrected with clear instructions in directing students' understanding. As with the third student's answer to question number 1, the special attention given is to provide an opportunity to improve the form of mathematical expression that is built because the next execution is correct. In other words, students must carefully and well understand the instructions given by the teacher (Walshaw, 2012).
Question number 2 received different responses from the three subjects in this study. For the first student, the responses given were interesting because they did not experience external or internal constraints in constructing the solution to the problem. In contrast to the second subject who thought he didn't know because the class conditions were not conducive or noisy. This condition is a challenge in the learning environment where students are involved to be active in learning activities (Kahl, 2013). As for the third subject, relying more on predictions than tracing answers mathematically. Therefore, teachers need to provide intervention to students who experience this as a target for improving learning outcomes.
If explored further, the second student is given the opportunity to understand well the questions given. As a result, he is able to construct his argument logically to show what the correct answer looks like. In contrast to the third student, for the first part of the second question, the argument put forward is correct so that the opportunity given by the teacher can lead students to think again and construct the correct answer. Even so, the answer to the second part of this question is still not correct. In other words, these students need opportunity to learn to raise their level of thinking. In line with that, Hwang \& Ham (2021) emphasize that opportunity to learn that can be provided in the form of procedural tasks can improve mathematical literacy.
For the third question, the second subject shows an interesting thinking structure, interrelated arguments, and performs an appropriate evaluation. This thinking structure begins with determining the problem keyword, namely the cheapest store is marked with the most discount discounts. Therefore, in the evaluation, the intended price discount is stated, and then concludes the store that provides the largest discount. In contrast to the first subject who experienced inaccuracy, although after that the teacher gave the opportunity to re-examine the answer. The response from these opportunities has an impact on the improvements made so that the real answer can be found. Compared to the two subjects, this third subject really needs to get special intervention in helping himself to build understanding through mathematical literacy knowledge.
Of all the answers put forward by students, there are several important lessons that both teachers and other practitioners need to know. Forms of opportunity to learn need to be prepared and should vary based on the level of ability of students. For learning mathematics, it is seen that not all of them are successful in completing the given mathematical literacy questions. Constraints faced by students can be sourced internally and externally. Internal constraints can be in the form of misconceptions, inaccuracy, lack of knowledge and learning experience, and lack of initiative. In addition, external factors are in the form of a conducive learning environment because not all students like the noisy atmosphere in the classroom.

CONCLUSIONS AND SUGGESTIONS

Overall, this research shows that opportunity to learn need to be given to students, especially contextbased mathematics learning to support the improvement of mathematical literacy skills. Opportunity to learn can be prepared in the form of context-based math problems. By giving such questions, students experience a learning process that significantly supports their mathematical literacy skills. Significant

ICSAT INTERNATIONAL PROCEEDING
ISBN: 978-623-7496-62-5
Vol, 11 Issue 4
changes can be seen in the students' ability to use their knowledge and reasoning by utilizing mathematical concepts to solve the given problems.
Of the 3 students involved in this study, the learning activities given to students need to be prepared by taking into account the different abilities of students. Not all students can achieve the best level in learning mathematics. This is influenced by two factors, both internally and externally. Internal constraints can be in the form of misconceptions, inaccuracy, lack of knowledge and learning experience, and lack of initiative. Meanwhile, external constraints can be in the form of a conducive learning environment.
In the future, it is necessary for education practitioners in learning mathematics to review the extent to which students can be free from the misconceptions experienced if given a series of opportunity to learn (Nasrullah \& Baharman, 2018). Likewise, the inaccuracy where various opportunity to learn allow can change such affective constraints. And whether students are able to build their knowledge and learning experiences well if context-based opportunity to learn are provided in a structured, systematic manner, and pay attention to students' abilities (Miller et al., 2020). Until the importance of preparing a conducive learning environment has become a special concern for teachers (König et al., 2017), in carrying out learning activities in the classroom.

REFFERENCE

Cogan, L. S., \& Schmidt, W. H. (2015). The concept of opportunity to learn (OTL) in international comparisons of education. In Assessing mathematical literacy (pp. 207-216). Springer.
Elliott, S. N., \& Bartlett, B. J. (2021). Opportunity to Learn Opportunity to Learn The Concept of Opportunity to Learn: Its Con -. August, 1-14. https://doi.org/10.1093/oxfordhb/9780199935291.013.70
Goldhaber, D. D., \& Brewer, D. J. (1996). Evaluating the effect of teacher degree level on educational performance. Developments in School Finance, February, 197-210.
Hwang, J., \& Ham, Y. (2021). Relationship between mathematical literacy and opportunity to learn with different types of mathematical tasks. Journal on Mathematics Education, 12(2), 199-222. https://doi.org/10.22342/JME.12.2.13625.199-222
Kahl, C. (2013). Today 'S Students Understanding of a Supportive Learning Environment. Journal of Teaching and Education, 2(2), 403-411.
König, J., Tachtsoglou, S., Lammerding, S., Strauß, S., Nold, G., \& Rohde, A. (2017). The Role of Opportunities to Learn in Teacher Preparation for EFL Teachers' Pedagogical Content Knowledge. Modern Language Journal, 101(1), 109-127. https://doi.org/10.1111/modl. 12383
Lange, J. A. N. D. E. (2015). Mathematics for Literacy. February.
Miller, S. J., Noell, G. H., Harris, M. T., McIver, E. B., \& Alvarez, J. P. (2020). Assessing the Effects of Instructional Set Size on Learning. Assessment for Effective Intervention, 46(1), 14-26. https://doi.org/10.1177/1534508418825304
Mulbar, U., \& Nasrullah. (2014). Learning From Misconception To Re-Educate.
Nasrullah, \& Baharman. (2018). Exploring Practical Responses of M3LC for Learning Literacy. Journal of Physics: Conference Series, 954(1). https://doi.org/10.1088/1742-6596/954/1/012007
Ni, Y., \& Zhou, Y.-D. (2005). Teaching and Learning Fraction and Rational Numbers: The Origins and Implications of Whole Number Bias. Educational Psychologist ISSN:, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001
Oakes, J. (1989). What Educational Indicators? The Case for Assessing the School Context. Educational Evaluation and Policy Analysis, 11(2), 181-199. https://doi.org/10.3102/01623737011002181
Siew, N. M., Amir, N., \& Chong, C. L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. Oecd 2014, 1-20.
Walshaw, M. (2012). Opportunities to learn. Journal of Mathematics Teacher Education, 15(6), 425427. https://doi.org/10.1007/s10857-012-9231-2

ICSAT INTERNATIONAL PROCEEDING

ISBN: 978-623-7496-62-5
Vol, 11 Issue 4

Wijaya, A., van den Heuvel-Panhuizen, M., \& Doorman, M. (2015). Opportunity-to-learn contextbased tasks provided by mathematics textbooks. Educational Studies in Mathematics, 89(1), 4165. https://doi.org/10.1007/s10649-015-9595-1

Yin, R. K. (2015). Qualitative research from start to finish. Guilford publications.

