Metode Perbaikan Citra Tanaman atas Variasi Iluminasi dengan Metode KNN (K-Nearest Neighbour) dan ANN (Artificial Neural Network) pada Sistem Prediksi Pigmen Fotosintesis secara Non Destruktif
(1) Universitas Ma Chung
(2) Universitas Ma Chung
(3) Universitas Ma Chung
(*) Corresponding Author
DOI: https://doi.org/10.26858/jessi.v3i2.38094
Abstract
Keywords
Full Text:
PDFReferences
Młodzińska, E., Acta Biologica Cracoviensia Series Botanica, Survey of Plant Pigments: Molecular and Environmental, pp.7-16, 2009.
Thrane, J,-E., Spectrophotometric Analysis of Pigments: A Critical Assessment of a High-Throughput Method for Analysis of Algal Pigment Mixtures by Spectral Deconvolution. PloS one, 10(9), p.e0137645, 2015.
Prilianti, K., Anam, S., Brotosudarmo, T. & Suryanto, A., Real-time Assessment of Plant Photosynthetic Pigment Contents with An Artificial Intelligence Approach, 2020.
Justine, A., Pengembangan Fuzzy Convolutional Neural Network untuk Pengenalan Warna pada Sistem Prediksi Pigmen Tanaman, Malang: Universitas Ma Chung, 2021.
Afifi, M., Price, B., Cohen, S., Brown, Michael S., When Color Constancy Goes Wrong: Correcting Improperly White-Balanced Images, pp.1-10, 2019.
Afifi, M., Brown, Michael S., Deep White-Balance Editing, Computer Vision Foundation, pp.1397-1406, 2020.
Pipara, A., Oza, U., Mandal, S., Underwater Image Color Correction Using Ensemble Colorization Network, pp. 2011-2020, 2021.
Article Metrics
Abstract view : 341 times | PDF view : 44 timesRefbacks
- There are currently no refbacks.
Indexed by:



















Journal of Embedded Systems, Security and Intelligent Systems (JESSI) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License