Daya Matematis : Jurnal Inovasi Pendidikan Matematika

Volume 10 Nomor 3 December 2022 Hal. 240-245
p-ISSN:2541-4232 dan e-ISSN: 2354-7146

HARMONIOUS LABELING ON HELM GRAPHS

Husnul Hatima ${ }^{1}$, Nurdin Hinding ${ }^{2}$, Muh. Nur ${ }^{3}$
${ }^{1}$ Master's Program in Mathematics, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
Email: husnulhatima1813@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University , Makassar, Indonesia
*Correspondence Author: nurdin1701@unhas.ac.id, Email: muhammadnur@unhas.ac.id

(Received: 12-10-2022; Reviewed: 15-10-2022; Revised: 24-11-2022; Accepted: 15-12-2022; Published: 26-12-2022)

cc) () © ${ }^{\text {(})} 2022$-Daya matematis: Jurnal inovasi pendidikan matematika. This article open acces licenci by CC BY-NC-4.0 (https://creativecommons.org/licenses/by-nc/4.0/)

Abstract

graph $G(V, E)$ consists of two sets, namely vertices Vand edges E, which Vare sets that cannot be empty. The helmet graph is obtained from graph circle with addition side pendants with notation H_{n}. Something graph Hside q is said to be harmonious if there is an injective function $\mathrm{f}: \mathrm{V} \rightarrow\{0,1,2, \ldots, 3 \mathrm{n}-1\}$ that produces function labeling side $\mathrm{g}(\mathrm{xy})=(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}))(\bmod \mathrm{q})$ which will result in a different sided label. In this thesis, graphs H_{n} with nodd and even nresults will be constructed as H_{n} harmonious graphs. Where for every $\mathrm{n} \geq 3$ for odd helmet graph and $n \geq 4$ for even helmet graph.

Keywords : Graph Labeling, Helmet graphics, Harmonious Graph , Labeling harmonious.

INTRODUCTION

Labeling graph is mapping one on one map set from point and side graph to set number round positive, or in other words ie pairing function _ every element graph good side nor point with number round positive (Gallian n, 2020). Labeling graph already many growing, for one is labeling harmonious. Something graph H with sides q is said to be harmonious if there is an injective function $f: V \rightarrow\{0,1,2, \ldots, 3 n-1\}$ that produces function labeling side $g(x y)=(f(x)+f(y))(\bmod q)$ which will result in a different sided label. (Graham and Shloane, 1980).
A number of results research on labeling harmonious among them is P.Jeyanthi (2018) is decisive that super subdivium graph is graph harmonious odd, M. Kalaimathi (2019) is decisive graph acyclic is graph harmonious. Now continues with helmet graph to be showed as graph harmonious .
On research this will given construction labeling harmonious on the helm H_{n} graph with n odd \geq 3and neven ≥ 4 which will show that the helm graph is a harmonious graph.

RESULTS AND DISCUSSION

In part this will discussed about results labeling harmoniouss on the helm graph with nodd and neven. The definition of a set of vertices and a set of edges on a helm graph are $V\left(H_{n}\right)=\left\{v_{0}, v_{i}, u_{i} \mid i=1, \ldots, n\right\}$ and $\quad E\left(H_{n}\right)=\left\{v_{0} v_{i}, v_{i} u_{i} \mid i=1, \ldots, n\right\} \cup\left\{v_{i} v_{i+1} \mid i=1, \ldots, n-\right.$ $1\} \cup\left\{v_{1} v_{n}\right\}$.

1. ODD HARMONIOUS LABELING

In part this will be discussed about labeling harmony odd with $n \geq 3$ by constructing the point labeling function in the form of an algorithm and then determining the edge labeling.

Figure 1. Helmet graph H_{5}

Next defined labeling $f: V \rightarrow\{0,1,2, \ldots, 3 n-1\}$ on helm graph H_{n} for $n \geq 3$ odd, use the following Algorithm 1:

Algorithm 1:

1. Point center v_{0} labeled 0 .
2. Point v_{1} labeled 1 .
3. Point v_{i} by $i=2, \ldots, n$ being labeled

$$
\frac{3 i-2}{2} .
$$

4. The pendant point u_{1} is labeled

$$
3 n-1
$$

5. Point pendant u_{i} with $i=2,3, \ldots, n$ labeled

$$
3(n-i+1)
$$

Theorem 1. Suppose $n \geq 3$ and H_{n} is a helmet graph, then it H_{n} is a harmonious graph.
Proof:
For prove that helmet H_{n} graph is a harmonious graph, so a labeling will be constructed on H_{n} those that fulfill it properties certain. Based on results research conducted on cases _simple , then , is formed function labeling vertices on the helmet H_{n} graph with nodd numbers $f: \bar{V} \rightarrow\{0,1,2, \ldots, 3 n-$ $1\}$ that is:

$$
f\left(v_{i}\right)=\left\{\begin{aligned}
0, & i=0 \\
1, & i=1 \\
\left\lceil\frac{3 i-2}{2}\right\rceil, & i=2,3, \ldots, n
\end{aligned}\right.
$$

and

$$
f\left(u_{i}\right)= \begin{cases}3 n-1, & i=1 \\ 3(n-i+1), & i=2,3, \ldots, n\end{cases}
$$

Based on constructed function _ that, next will proven that every side have different weights \qquad modulo $3 n$ by using a function $g\left(e_{i}\right)=f(x)+f(y)$ with $e=x y$, as follows:

1. $g\left(v_{0} v_{1}\right)=\left(f\left(v_{0}\right)+f\left(v_{1}\right)\right)(\bmod 3 n)$

$$
=1(\bmod 3 n)
$$

2. For $i=2, \ldots, n$, obtained

$$
\begin{aligned}
g\left(v_{0} v_{i}\right) & =\left(f\left(v_{0}\right)+f\left(v_{i}\right)\right)(\bmod 3 n) \\
& =\left\lceil\frac{3 i-2}{2}\right\rceil(\bmod 3 n) .
\end{aligned}
$$

3. $g\left(v_{1} v_{2}\right)=\left(f\left(v_{1}\right)+f\left(v_{2}\right)\right)(\bmod 3 n)$

$$
=3(\bmod 3 n) .
$$

4. For $i=2, \ldots, n-1$, obtained

$$
\begin{aligned}
g\left(v_{i} v_{i+1}\right) & =\left(f\left(v_{i}\right)+f\left(v_{i+1}\right)\right)(\bmod 3 n) \\
& =\left(\left\lceil\frac{3 i-2}{2}\right\rceil+\left\lceil\frac{3(i+1)-2}{2}\right\rceil\right)(\bmod 3 n)
\end{aligned}
$$

5. $g\left(v_{1} v_{n}\right)=\left(f\left(v_{1}\right)+f\left(v_{n}\right)\right)(\bmod 3 n)$

$$
=\left(n+\left(\frac{n+1}{2}\right)\right)(\bmod 3 n) .
$$

6. $g\left(v_{1} u_{1}\right)=\left(f\left(v_{1}\right)+f\left(u_{1}\right)\right)(\bmod 3 n)$

$$
=0 .
$$

7. For $i=2, \ldots, n$, obtained

$$
\begin{aligned}
g\left(v_{i} u_{i}\right) & =\left(f\left(v_{i}\right)+f\left(u_{i}\right)\right)(\bmod 3 n) \\
& =\left(\left\lceil\frac{3 i-2}{2}\right\rceil+3(n-i+1)\right)(\bmod 3 n) .
\end{aligned}
$$

Based on equation (1) to equation (7) is obtained weight different side, with thereby function labeling $f^{*}: E\left(H_{n}\right) \rightarrow\{0,1, \ldots, 3 n-1\}$ defines that a graph H_{n} with n an odd number is a harmonious graph.

Figure 2. Labeling helmet H_{5} graph

2. EVEN HARMONIOUS LABELING

In sub chapters this will discussed about labeling harmonious even in the helm graph . Previously written down return definition set point and set edge on the helmet graph for $n \geq 4$ as follows:
$V\left(H_{n}\right)=\left\{v_{0}, v_{i}, u_{i} \mid i=1, \ldots, n\right\}$
and
$E\left(H_{n}\right)=\left\{v_{0} v_{i}, v_{i} u_{i} \mid i=1, \ldots, n\right\} \cup\left\{v_{i} v_{i+1} \mid i=1, \ldots, n\right\} \cup\left\{v_{1} v_{n}\right\}$.

Figure 3. Helmet Graph H_{6}

Next defined labeling $f: V \rightarrow\{0,1,2, \ldots, 3 n-1\}$ on a helmet graph H_{n} for an $n \geq 4$ even number, the following Algorithm 2 is used:

Algorithm 2:

1. Point main v_{0} labeled 0 .
2. Point v_{1} labeled 1.
3. Point v_{i} by $(i=2, \ldots, n-1)$ being labeled

$$
\frac{3 i-2}{2}
$$

4. Point v_{n} labeled

$$
\frac{3 n+2}{2}
$$

5. The pendant point u_{1} is labeled

$$
3 n-1
$$

6. The pendant point u_{2} is labeled

$$
3 n-4
$$

7. The pendant point u_{3} is labeled

$$
3 n-7
$$

8. Point pendant u_{i} with $i=4, \ldots, n-1$ labeled

$$
3(n-i-1)
$$

9. The pendant point u_{n} is labeled

$$
3 n-2
$$

Based on results research, obtained Theorem 2 follows :
Theorem 2. Suppose $n \geq 4$ and H_{n} is a helmet graph, then it H_{n} is a harmonious graph .
Proof:

For prove that helm H_{n} graph is a harmonious graph, so a label will be constructed on those that meet H_{n} certain properties . Based on results research conducted on cases _simple, then , is formed function labeling vertices on the helmet H_{n} graph with nan even number $f: V \rightarrow\{0,1,2, \ldots, 3 n-1\}$

$$
f\left(v_{i}\right)=\left\{\begin{aligned}
0, & i=0 \\
3 i-2, & i=1 \\
\left\lceil\frac{3 i-2}{2}\right\rceil, & i=2,3, \ldots, n-1 \\
\left\lceil\frac{3 n+2}{2}\right\rceil, & i=n
\end{aligned}\right.
$$

and

$$
f\left(u_{i}\right)= \begin{cases}3 n-1, & i=1 \\ 3 n-4, & i=2 \\ 3 n-7, & i=3 \\ 3(n-i-1), & i=4, \ldots, n-1 \\ 3 n-2, & i=n .\end{cases}
$$

Based on constructed function _ that, next will proven that every side have different weights in modulo $3 n$ by using a function $g(e)=f(x)+f(y)$ with $e=x y$, as follows:

1. $g\left(v_{0} v_{1}\right)=\left(f\left(v_{0}\right)+f\left(v_{1}\right)\right)(\bmod 3 n)$

$$
=1(\bmod 3 n)
$$

2. For $i=2, \ldots, n-1$

$$
\begin{aligned}
g\left(v_{0} v_{i}\right) & =\left(f\left(v_{0}\right)+f\left(v_{i}\right)\right)(\bmod 3 n) \\
& =\left\lceil\frac{3 i-2}{2}\right\rceil(\bmod 3 n) .
\end{aligned}
$$

3. $g\left(v_{0} v_{n}\right)=\left(f\left(v_{0}\right)+f\left(v_{n}\right)\right)(\bmod 3 n)$

$$
=\left[\frac{3 n+2}{2}\right](\bmod 3 n) \text {. }
$$

4. For $i=1$

$$
\begin{aligned}
g\left(v_{i} v_{i+1}\right) & =\left(f\left(v_{1}\right)+f\left(v_{2}\right)\right)(\bmod 3 n) \\
& =3(\bmod 3 n) .
\end{aligned}
$$

5. For $i=2, \ldots, n-1$

$$
\begin{aligned}
g\left(v_{i} v_{i+1}\right) & =\left(f\left(v_{i}\right)+f\left(v_{i+1}\right)\right)(\bmod 3 n) \\
& =\left(\left\lceil\frac{3 i-2}{2}\right\rceil+\left\lceil\frac{3(i+1)-2}{2}\right\rceil\right)(\bmod 3 n) .
\end{aligned}
$$

6. $g\left(v_{1} v_{n}\right)=\left(f\left(v_{1}\right)+f\left(v_{n}\right)\right)(\bmod 3 n)$

$$
=\left(1+\left\lceil\frac{3 n+2}{2}\right\rceil\right)(\bmod 3 n)
$$

7. $g\left(v_{1} u_{1}\right)=\left(f\left(v_{i}\right)+f\left(u_{i}\right)\right)(\bmod 3 n)$

$$
=0
$$

8. $g\left(v_{2} u_{2}\right)=\left(f\left(v_{2}\right)+f\left(u_{2}\right)\right)(\bmod 3 n)$

$$
=(3 n-2)(\bmod 3 n)
$$

9. $g\left(v_{3} u_{3}\right)=\left(f\left(v_{3}\right)+f\left(u_{3}\right)\right)(\bmod 3 n)$

$$
=(3 n-3)(\bmod 3 n)
$$

10. For $i=4, \ldots, n-1$

$$
g\left(v_{i} u_{i}\right)=\left(f\left(v_{i}\right)+f\left(u_{i}\right)\right)(\bmod 3 n)
$$

$$
=\left(\left\lceil\frac{3 i-2}{2}\right\rceil+3(n-i+1)\right)(\bmod 3 n) .
$$

11. $g\left(v_{n} u_{n}\right)=\left(f\left(v_{n}\right)+f\left(u_{n}\right)\right)(\bmod 3 n)$

$$
=\left(\left\lceil\frac{3 n+2}{2}\right\rceil+(3 n-2)\right)(\bmod 3 n) .
$$

Based on equality on show that every side have different weights, with _ thereby function labeling $f^{*}: E\left(H_{n}\right) \rightarrow\{0,1, \ldots, 3 n-1\}$ defines that a graph H_{n} with n an even number is a harmonious graph.

Figure 4. Labeling helmet H_{6} graph

CONCLUSION

Based on results study so obtained conclusion that helmet H_{n} graph which is shown in Theorem 1 and Theorem 2 is something graph harmonious .

REFFERENCE

Atmadja. K Sugeng, KA, Yuniarko . T , (2014). Harmonious Labeling on Triangular Ladder Graphs, Proceedings of the XVII-2014 National Mathematical Conference, ITS Surabaya.
Baĉa M., Jendrol ' S., Miller M., and Ryan J. 2007. On irregular total labeling , Discrete Math. 307 (1-12). 1378-1388.
Chartrand, G. and Zhandy , L., 2005 . Graphs and Digraphs Second Edition. A Division of Wadsworth , Inc., California.
deepa . P,S Uma Maheswari, K. Indriani (2016). Prime Harmoniou s Labeling of Some New Graphs . IOSR Journal of Mathematics , Vol. 12, 57-61.
Gallian, JA, 2020. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, vol. 19.

Graham, RL \& Sloan , NJ, (1980). On Additives Bases and Harmonious Graphs SIAM.J. Alg Discrate Math . Vol.1, No. 3, 382-404.
Hasmawati, 2020. Introduction and Types of Graphs. UPT Unhas Press, Makassar.
Liang, Z. -H., \& Bai, Z. -L. (2009). on the odd harmonious graph with applications . Journals of Applied Mathematics and Computing , 29(1-2), 05-116.
Munir, R. 2010. Mathematics Discrete . Edition third . Bandung : Bandung Informatics .
Rosen, KH 2007. Discrete Mathematics and its Application (6ed.). New York: McGraw Hill .
Slamin . 2019. Graph theory and its applications . Malang: Dream Tirta Buana.
West, DB 2002. Introduction to Graph Theory (2ed.). New Jersey: Prentice-Hall.

