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Abstract  
graph G(V, E) consists of two sets, namely vertices Vand edges E, which Vare sets that cannot be empty. The 
helmet graph is obtained from graph circle with addition side pendants with notation H!. Something graph Hside 
q is said to be harmonious if there is an injective function f: V → {0,1,2, … ,3n − 1}that produces function 
labeling side g(xy) = 9f(x) + f(y);(mod	q)which will result in a different sided label. In this thesis, graphs 
H!with nodd and even nresults will be constructed as H! harmonious graphs. Where for every n ≥ 3for odd 
helmet graph and n ≥ 4for even helmet graph. 
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INTRODUCTION 

Labeling graph is mapping one on one map set from point and side graph to set number round 
positive , or in other words ie pairing function _ every element graph good side nor point with number 
round positive (Gallian n, 20 20 ). Labeling graph already many growing , for one is labeling 
harmonious . Something graph 𝐻with sides 𝑞is said to be harmonious if there is an injective function 
𝑓: 𝑉 → {0,1,2, … ,3𝑛 − 1} that produces function labeling side 𝑔(𝑥𝑦) = 7𝑓(𝑥) + 𝑓(𝑦)9(𝑚𝑜𝑑	𝑞) 
which will result in a different sided label. (Graham and Shloane, 1980). 
A number of results research on labeling harmonious among them is P.Jeyanthi (2018) is decisive that 
super subdivium graph is graph harmonious odd , M. Kalaimathi (2019) is decisive graph acyclic is 
graph harmonious . Now continues with helmet graph to be showed as graph harmonious . 
On research this will given construction labeling harmonious on the helm 𝐻! graph with 𝑛 odd ≥
3and 𝑛even ≥ 4 which will show that the helm graph is a harmonious graph. 
 

RESULTS AND DISCUSSION 

In part this will discussed about results labeling harmoniouss on the helm graph with 𝑛odd and 
𝑛even. The definition of a set of vertices and a set of edges on a helm graph are  
𝑉(𝐻!) = {𝑣", 𝑣# , 𝑢# 	|	𝑖 = 1,… , 𝑛	}and 𝐸(𝐻!) = {𝑣"𝑣# , 𝑣#𝑢# 	|𝑖 = 1,… , 𝑛} ∪ {	𝑣#𝑣#$%|𝑖 = 1,… , 𝑛 −
1} 	∪ {	𝑣%𝑣!}. 
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1. ODD HARMONIOUS LABELING 

In part this will be discussed about labeling harmony odd with 𝑛 ≥ 3 by constructing the point 
labeling function in the form of an algorithm and then determining the edge labeling. 

Figure 1. Helmet graph 𝐻& 

 

 

 

 

 

 

 

 

Next defined labeling 𝑓: 𝑉 → {0,1,2, … ,3𝑛 − 1} on helm graph 𝐻! for 𝑛 ≥ 3 odd, use the 
following Algorithm 1: 

Algorithm 1: 

1. Point  center 𝑣" labeled 0. 
2. Point 𝑣% labeled 1. 
3. Point 𝑣# by 𝑖 = 2,… , 𝑛 being labeled 

BCDE
E

. 
4. The pendant point 𝑢%is labeled 

3𝑛 − 1. 
5. Point pendant 𝑢# with 𝑖 = 2,3, … , 𝑛 labeled 

3(𝑛 − 𝑖 + 1). 

Theorem 1. Suppose 𝑛 ≥ 3 and 𝐻! is a helmet graph, then it 𝐻! is a harmonious graph. 

Proof: 

For prove that helmet 𝐻! graph is a harmonious graph, so a labeling will be constructed on 𝐻! those 
that fulfill it properties certain . Based on results research conducted on cases _ simple , then , is 
formed function labeling vertices on the helmet 𝐻! graph with 𝑛odd numbers 𝑓: 𝑉 → {0,1,2, … ,3𝑛 −
1} that is : 

𝑓(𝑣#) = F

0,																			𝑖 = 0
1	,																		𝑖 = 1

G
3𝑖 − 2
2

H , 𝑖 = 2,3, … , 𝑛		,
 

and 

𝑓(𝑢#) = I3𝑛 − 1,																				𝑖 = 1
3(𝑛 − 𝑖 + 1), 𝑖 = 2,3, … , 𝑛	. 

Based on constructed function _ that , next will proven that every side have different weights _ in 
modulo 3𝑛by using a function 𝑔(𝑒#) = 𝑓(𝑥) + 𝑓(𝑦) with 𝑒 = 𝑥𝑦, as follows: 

1. 𝑔(𝑣"𝑣%) = (𝑓(𝑣") + 𝑓(𝑣%))		(𝑚𝑜𝑑	3𝑛) 
= 1	(𝑚𝑜𝑑	3𝑛).  
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2.  For 𝑖 = 2,… , 𝑛, obtained 
𝑔(𝑣"𝑣#) = (𝑓(𝑣") + 𝑓(𝑣#))	(𝑚𝑜𝑑	3𝑛) 

= L(#*)
)
M (𝑚𝑜𝑑	3𝑛). 

3. 𝑔(𝑣%𝑣)) 	= (𝑓(𝑣%) + 𝑓(𝑣)))	(𝑚𝑜𝑑	3𝑛)  
= 3	(𝑚𝑜𝑑	3𝑛). 

4. For 𝑖 = 2,… , 𝑛 − 1, obtained 
𝑔(𝑣#𝑣#$%) = (𝑓(𝑣#) + 𝑓(𝑣#$%))	(𝑚𝑜𝑑	3𝑛) 

= NG
3𝑖 − 2
2

H + O
3(𝑖 + 1) − 2

2
PQ (𝑚𝑜𝑑	3𝑛) 

5. 𝑔(𝑣%𝑣!) 	= (𝑓(𝑣%) + 𝑓(𝑣!))	(𝑚𝑜𝑑	3𝑛)  
= R𝑛 + S!$%) TU	(𝑚𝑜𝑑	3𝑛). 

6. 𝑔(𝑣%𝑢%) 	= (𝑓(𝑣%) + 𝑓(𝑢%))	(𝑚𝑜𝑑	3𝑛)  
= 0. 

7.  For 𝑖 = 2,… , 𝑛, obtained 
𝑔(𝑣#𝑢#) 	= (𝑓(𝑣#) + 𝑓(𝑢#))	(𝑚𝑜𝑑	3𝑛)  

		= RL(#*)) M + 3(𝑛 − 𝑖 + 1)U (𝑚𝑜𝑑	3𝑛). 
 

Based on equation (1) to equation (7) is obtained weight different side , with _ thereby 
function labeling 𝑓∗: 𝐸(𝐻!) → {0,1, … , 3𝑛 − 1} defines that a graph 𝐻! with 𝑛	an odd number is a 
harmonious graph. 
 
 
 
 

Figure 2. Labeling helmet 𝐻& graph 

 

 

 

 

 

 
 
 
 
 

2. EVEN HARMONIOUS LABELING 

In sub chapters this will discussed about labeling harmonious even in the helm graph . 
Previously written down return definition set point and set edge on the helmet graph for 𝑛 ≥ 4 as 
follows: 

𝑉(𝐻!) = {𝑣", 𝑣# , 𝑢# 	|	𝑖 = 1,… , 𝑛	} 

and 

𝐸(𝐻!) = {𝑣"𝑣# , 𝑣#𝑢#|𝑖 = 1,… , 𝑛} ∪ {	𝑣#𝑣#$%|𝑖 = 1,… , 𝑛} 	∪ {	𝑣%𝑣!}. 
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Figure 3. Helmet Graph 𝐻, 

 

 

 

 

 

 

 

 

 

 

Next defined labeling 𝑓: 𝑉 → {0,1,2, … , 3𝑛 − 1} on a helmet graph 𝐻!for an 𝑛 ≥ 4 even 
number, the following Algorithm 2 is used: 

Algorithm 2: 

1. Point main 𝑣" labeled 0. 
2. Point 𝑣% labeled 1. 

 
 

3. Point 𝑣#by (𝑖 = 2,… , 𝑛 − 1) being labeled 
3𝑖 − 2
2

	. 
4. Point 𝑣! labeled 

	
3𝑛 + 2
2

	. 

 

5. The pendant point 𝑢% is labeled 
	3𝑛 − 1.  

 
 

6. The pendant point 𝑢) is labeled 
3𝑛 − 4. 

7. The pendant point 𝑢( is labeled 
	3𝑛 − 7. 

8. Point pendant 𝑢# with 𝑖 = 4,… , 𝑛 − 1 labeled 
3(𝑛 − 𝑖 − 1). 

9. The pendant point 𝑢! is labeled 
3𝑛 − 2.  

Based on results research , obtained Theorem 2 follows : 

Theorem 2. Suppose 𝑛 ≥ 4 and 𝐻! is a helmet graph, then it 𝐻! is a harmonious graph . 

Proof: 
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For prove that helm 𝐻! graph is a harmonious graph, so a label will be constructed on those that meet 
𝐻! certain properties . Based on results research conducted on cases _ simple , then , is formed 
function labeling vertices on the helmet 𝐻! graph with 𝑛an even number 𝑓: 𝑉 → {0,1,2, … ,3𝑛 − 1} 

𝑓(𝑣#) =

⎩
⎪
⎨

⎪
⎧

0,																				𝑖 = 0
3𝑖 − 2,										𝑖 = 1

G
3𝑖 − 2
2 H , 𝑖 = 2,3, … , 𝑛 − 1

G
3𝑛 + 2
2 H , 𝑖 = 𝑛

 

and 

𝑓(𝑢#) =

⎩
⎪
⎨

⎪
⎧
3𝑛 − 1,																				𝑖 = 1
3𝑛 − 4,																					𝑖 = 2
3𝑛 − 7,																					𝑖 = 3
3(𝑛 − 𝑖 − 1),										𝑖 = 4,… , 𝑛 − 1
3𝑛 − 2,																					𝑖 = 𝑛	.

 

Based on constructed function _ that , next will proven that every side have different weights _ in 
modulo 3𝑛 by using a function 𝑔(𝑒) = 𝑓(𝑥) + 𝑓(𝑦) with 𝑒 = 𝑥𝑦, as follows: 

1. 𝑔(𝑣"𝑣%) = (𝑓(𝑣") + 𝑓(𝑣%))		(𝑚𝑜𝑑	3𝑛) 
					= 1	(𝑚𝑜𝑑	3𝑛). 

2. For 𝑖 = 2,… , 𝑛 − 1 
𝑔(𝑣"𝑣#) = (𝑓(𝑣") + 𝑓(𝑣#))	(𝑚𝑜𝑑	3𝑛) 

= L(#*)
)
M (𝑚𝑜𝑑	3𝑛). 

3. 𝑔(𝑣"𝑣!) = (𝑓(𝑣") + 𝑓(𝑣!))	(𝑚𝑜𝑑	3𝑛) 
= _(!$)

)
` (𝑚𝑜𝑑	3𝑛). 

4.  For 𝑖 = 1 
𝑔(𝑣#𝑣#$%) 	= (𝑓(𝑣%) + 𝑓(𝑣)))	(𝑚𝑜𝑑	3𝑛)  

= 3	(𝑚𝑜𝑑	3𝑛). 
5. For 𝑖 = 2,… , 𝑛 − 1 

𝑔(𝑣#𝑣#$%) = (𝑓(𝑣#) + 𝑓(𝑣#$%))	(𝑚𝑜𝑑	3𝑛) 
= SL(#*)

)
M + L((#$%)*)

)
MT (𝑚𝑜𝑑	3𝑛). 

6. 𝑔(𝑣%𝑣!) 	= (𝑓(𝑣%) + 𝑓(𝑣!))	(𝑚𝑜𝑑	3𝑛)  
= S1 + L(!$)

)
MT (𝑚𝑜𝑑	3𝑛). 

7. 𝑔(𝑣%𝑢%) 	= (𝑓(𝑣#) + 𝑓(𝑢#))	(𝑚𝑜𝑑	3𝑛)  
= 0. 

8. 𝑔(𝑣)𝑢)) 	= (𝑓(𝑣)) + 𝑓(𝑢)))	(𝑚𝑜𝑑	3𝑛)  
= (3𝑛 − 2)	(𝑚𝑜𝑑	3𝑛). 

9. 𝑔(𝑣(𝑢() 	= (𝑓(𝑣() + 𝑓(𝑢())	(𝑚𝑜𝑑	3𝑛)  
= (3𝑛 − 3)	(𝑚𝑜𝑑	3𝑛). 

10. For  𝑖 = 4,… , 𝑛 − 1 
𝑔(𝑣#𝑢#) 	= (𝑓(𝑣#) + 𝑓(𝑢#))	(𝑚𝑜𝑑	3𝑛)  

		= RL(#*)) M + 3(𝑛 − 𝑖 + 1)U (𝑚𝑜𝑑	3𝑛). 
 

11. 𝑔(𝑣!𝑢!) 	= (𝑓(𝑣!) + 𝑓(𝑢!))	(𝑚𝑜𝑑	3𝑛)  
		= SL(!$)

)
M + (3𝑛 − 2)T (𝑚𝑜𝑑	3𝑛). 

Based on equality on show that every side have different weights , with _ thereby function 
labeling 𝑓∗: 𝐸(𝐻!) → {0,1, … , 3𝑛 − 1} defines that a graph 𝐻!with 𝑛	an even number is a harmonious 
graph. 
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Figure 4. Labeling helmet 𝐻, graph 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 

Based on results study so obtained conclusion that helmet 𝐻! graph which is shown in 
Theorem 1 and Theorem 2 is something graph harmonious . 
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