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Abstract 
This article examines the optimal control model for the spread of diphtheria disease. Diphtheria is an 
infectious disease caused by the bacterium Corynebacterium diphtheriae. This model is divided into six 
compartments, namely populations of susceptibles (𝑆), latent (L), infected with symptoms (I!), infected 
without symptoms (I"), recovered with full immunity (R#) and recovered with partial immunity (R$). Two 
optimal controls are applied in the model, namely vaccination and treatment. The problem of optimal 
control is solved using Pontryagin's minimal principle, which consists of solving a set of necessary 
conditions that must be satisfied by the optimal control and its associated state. The numerical method used 
to solve the optimal control problem is the forward-backward sweep method. Based on the results of 
numerical simulations, both controls should be administered in large numbers and continuously from the 
beginning of observation to reduce the number of diphtheria-infected populations and control the spread of 
diphtheria. 

Keywords: Mathematical model of diphtheria spread, optimal control problem, state, forward-
backward sweep.  

 
INTRODUCTION 

The development of increasingly sophisticated technology has meant that the field of mathematics is 
also developing rapidly. For example, mathematical modeling is not only oriented to minor problems in 
everyday life but can also be used to discover how an infectious disease spreads. A mathematical model 
is a set of equations that express the behavior of a problem that occurs based on assumptions [1]. 
Diphtheria is an infectious disease caused by the bacterium Corynebacterium diphtheriae. The main 
symptoms of this disease are a sore throat, low fever, and swollen glands in the neck. In severe cases, 
the toxin can cause myocarditis or peripheral neuropathy. The disease is transmitted directly through 
physical contact or inhalation of aerosol secretions from an infected person's cough or sneeze [2,3]. 
Based on Centers for Disease Control (CDC) recommendations [4], infants and children under the age 
of 7 are recommended to receive the DTaP or DT vaccine. In contrast, older children and adults receive 
the Tdap and Td vaccines. Diphtheria is treated by giving diphtheria antitoxin and antibiotics, relieving 
symptoms and eradicating bacteria to speed up healing [5]. 
 
The number of diphtheria cases in Indonesia was reported to be 775 cases in 2013, decreased in 2014, 
and increased again in 2015 and 2016. In 2017, the number of reported diphtheria cases in Indonesia 
was 954 cases, with 44 deaths, so the Ministry of Health (Kemenkes) has declared the outbreak of this 
diphtheria disease Kejadian Luar Biasa (KLB). In 2019, the number of diphtheria cases decreased 
slightly; as of May 2020, there were 129 diphtheria cases. Based on data from the Ministry of Health, 
patients with diphtheria outbreaks that occurred throughout 2017 mostly never received the vaccine, and 
the age range of the sufferers was quite diverse. A diphtheria outbreak in 2017 and the prevalence of 
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diphtheria disease in Indonesia, which is still relatively high to date, proves that diphtheria is a real threat 
to the community, so preventive measures are needed to avoid the occurrence of future diphtheria 
outbreaks 6,7,8]. 
 
Several previous studies modeling the problem of diphtheria spread include Islam et al.[9] in 2022, the 
SLIR model was developed by assuming the latent population as asymptomatic diphtheria-infected 
individuals and this latent population cannot transmit diphtheria. In 2017, Sornbundit et al.[10] 
developed a SIR epidemic model to determine the spread of diphtheria in 77 provinces of Thailand. In 
the same year Puspita et al.[11] studied the mathematical model of diphtheria spread using the SIQR 
model developed from the epidemic model of infectious disease spread developed by Hethcote [12]. 
Suryani and Yuenita [13] used the MSEIR model by paying attention to the saturated incidence rate to 
determine the spread of diphtheria in Indonesia. In 2004, Cheuvart et al. [14] performed mathematical 
models to determine how long the vaccine could last to prevent diphtheria. In 2020, Aryani and 
Widyaningsih[15] studied the SVIR model developed by Liu et al.[16] and added vaccination efforts to 
suppress the spread of diphtheria in Indonesia. 
 
This study was developed from the SLIR model studied by Islam et al.[9] namely dividing the infected 
population into infected with symptoms and infected without symptoms, dividing the recovered 
population into recovered with full immunity and recovered with partial immunity, and assuming the 
population recovered can be reinfected. The model in this study also maintains optimal control in the 
form of vaccinations for susceptible populations and treatment for infected populations. 

 
METHOD 

The method used in this research is a literature review conducted at Hasanuddin University Faculty of 
Mathematics, which took place from February to July 2022. The data used are secondary. The steps in 
this study are to identify problems, build models, formulate optimal control problems, solve optimal 
control problems, and perform numerical simulations using Matlab 2015a. 

RESULT AND DISCUSSION 

The model developed in this study is divided into six compartments, namely susceptibles (𝑆), latent (𝐿), 
infected with symptoms (𝐼!), infected without symptoms (𝐼"), recovered with full immunity (𝑅#), dan 
recovered with partial immunity (𝑅$). The assumptions underlying the relationship between each 
compartment in the schematic model of diphtheria spread in Figure 1 are: 
1. Every born and migrated person is assumed to be healthy and susceptible to diphtheria infection 

and enters the compartment for the susceptible population (𝑆) with an input of 𝐴 individual per unit 
time. 

2. It is assumed that only one disease spreads in the population, namely diphtheria. 
3. The population reduction in each compartment due to natural deaths is assumed to be 𝜇 per unit 

time. 
4. The susceptible population (𝑆) decreases due to the interaction between the susceptible population 

(𝑆) and the infected population with symptoms (𝐼!) and the infected population without symptoms 
(𝐼"), so that the population from the compartment of the susceptible individuals (𝑆) to the latent 
compartment (𝐿) at a rate of 𝛽 per unit time. 

5. It is assumed that by providing controls such as vaccination 𝑢%(𝑡)  can reduce the susceptible 
population infected with diphtheria. The vaccinated susceptible population will acquire full 
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immunity so that it moves to the recovered with full immunity (𝑅#)	compartment at a rate of 𝑢%𝜔 
per unit time.  

6. The latent population (𝐿) moves to the symptomatic or asymptomatic infected population after the 
incubation period is complete at a rate of 𝛿 per unit time. 

7. The proportion 𝑛 infected population is the infected population but showing no symptoms, while 
the opposite proportion (1 − 𝑛) is the infected population with symptoms. 

8. The decrease in the population infected with symptoms in the infected with symptoms (𝐼!) 
compartment occurred due to deaths from diphtheria at a rate of 𝛼 per unit time. 

9. It is assumed that the infected with symptoms (𝐼!) compartment has a natural recovery rate of 𝜃 
per unit time. The proportion of 𝑚 indicates the population recovered from diphtheria has full 
immunity and moves to the recovered with full immunity (𝑅#) compartment and the proportion 
(1 − 	𝑚) shows the population recovered from diphtheria with partial natural immunity and moved 
to the Recovered with partial immunity	(𝑅$) compartment. 

10. The infected without symptoms (𝐼") compartment is an infected population without symptoms and 
can transmit disease, and the recovered population from this compartment only has partial natural 
immunity at a rate of 𝛾 per unit time. 

11. Since immunity does not last forever, the level of immunity will decrease over time and eventually 
be exhausted, allowing the population infected with the disease to be still reinfected. The population 
of the compartment recovered with full immunity (𝑅#) decreases at a rate of 𝜌 per unit time due to 
reduced vaccine immunity, and similarly, the population in the compartment recovered with partial 
immunity (𝑅$) decreases at a rate of 𝜂 per unit time due to exhausted immunity.  

12. The control 𝑢&(𝑡)  is the proportion of the population infected with symptoms (𝐼!) and the 
population infected without symptoms (𝐼") who are given treatment to accelerate the recovery rate 
of the infected population and reduce the mortality rate due to diphtheria infection. 

Figure 1. Schematic model of diphtheria spreading with vaccination and treatment control.  

 
 
Based on the schematic model of diphtheria spreading in Figure 1, the following system of 

differential equations is obtained: 
'(
')
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'.
')
	= (1 − 𝑢%𝜔)𝛽𝑆(𝐼! + 𝐼") − 𝛿𝐿 − 𝜇𝐿,  

'/!
')
= (1 − 𝑛)𝛿𝐿 − (1 + 𝑢&𝜏)𝜃𝐼!(𝑡) − (𝛼 + 𝜇)𝐼!(𝑡),  

'/"
')
	= 𝑛𝛿𝐿 − (1 + 𝑢&𝜏)𝛾𝐼" − 𝜇𝐼" ,  

'0#
')
	= 𝑚(1 + 𝑢&𝜏)𝜃𝐼! + 𝑢%𝜔𝑆 − 𝜌𝑅# − 𝜇𝑅# .  

 
 

(1) 
 
 

'0$
')
	= (1 −𝑚)(1 + 𝑢&𝜏)𝜃𝐼! + (1 + 𝑢&𝜏)𝛾𝐼" + 𝜌𝑅# − 	𝜂𝑅$ − 𝜇𝑅$.  

It is assumed that the initial conditions are 𝑆(0) > 0, 𝐿(0) > 0, 𝐼!(0) > 0, 𝐼"(0) > 0, 𝑅#(0) > 0, 
𝑅$(0) > 0, and all parameters in equation (1) are positive. The description of the variables and 
parameter values used in the diphtheria spread model can be seen in Table 1. 

Table 1 Description of variables and parameter values in the diphtheria spreading model 
Variables/ 

Parameters Description Values Unit Reference 

𝑆 The population susceptible to diphtheria 
infection. - Individual  - 

𝐿 The latent population is still in the 
incubation period. - Individual - 

𝐼! Infected population with symptoms. - Individual - 
𝐼" Infected population without symptoms. - Individual - 
𝑅# Recovered population with full immunity. - Individual - 

𝑅$ Recovered population with partial 
immunity. - Individual - 

Α Input rate of natural birth and migration.  200 Individual/
day. 

[6] 

𝜇 Average natural death rate. 0.002 1 / day. [6] 

𝛽 
The average rate of interaction between the 
susceptible population and the infected 
population. 

0.0000097 
1 / 

(Individual 
× day). 

[6] 

𝛿 Average individual displacement rate from 
𝐿 to 𝐼! or 𝐼". 0.143 1 / day. [6] 

𝜃 The average natural cure rate 𝐼!. 0.071428 1 / day. [13] 

𝛼 The average death rate caused by 
diphtheria infection 0.0054 1 / day. [6] 

𝛾 The average natural cure rate	𝐼". 0.00555 1 / day. Assumption 

𝜌 Average individual displacement rate from 
𝑅# to 𝑅$. 0.0001826 1 / day. [13] 

𝜂 Average individual displacement rate from 
𝑅$ to 𝑆. 0.0001826 1 / day. [13] 

𝑛 Proportion of population 𝐼". 0.8 - [13] 
(1 − 𝑛) Proportion of population 𝐼!. 0.2 - [13] 
𝑚 Proportion of population 𝑅# . 0.9 - [13] 

(1 − 𝑚) Proportion of population 𝑅$. 0.1 - [13] 
𝑢% Vaccination proportion. 0-1 - - 
𝑢& Treatment proportion. 0-1 - - 
𝜔 Vaccination effectiveness.  1 - Assumption 
𝜏 Treatment effectiveness. 0.9 - Assumption 

Review the following optimal control problem for the diphtheria disease spread model: 
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𝐽 = 𝑚𝑖𝑛
(𝑢%, 𝑢&)

G H𝐶%𝐿(𝑡) + 𝐶&𝐼!(𝑡) + 𝐶1𝐼"(𝑡) +
𝐶2
2
𝑢%&(𝑡) +

𝐶3
2
𝑢&&(𝑡)K

)#

)%

𝑑𝑡  
 

with constraint 
�̇� = 𝐴 + 𝜂𝑅$ − (1 − 𝑢%𝜔 − 𝑢&𝜎)𝛽𝑆𝐼! − 𝑢%𝜔𝑆 − 𝜇𝑆, 
�̇� = (1 − 𝑢%𝜔 − 𝑢&𝜎)𝛽𝑆𝐼! − 𝛿𝐿 − 𝜇𝐿, 
𝐼!̇ = (1 − 𝑛)𝛿𝐿 − (1 + 𝑢1𝜏)𝜃𝐼! − (𝛼 + 𝜇)𝐼!, 
𝐼"̇ = 𝑛𝛿𝐿 − (1 + 𝑢1𝜏)𝛾𝐼" − 𝜇𝐼" , 
�̇�# = 𝑚(1 + 𝑢1𝜏)𝜃𝐼! + 𝑢%𝜔𝑆 − 𝜌𝑅# − 𝜇𝑅# , 
�̇�$ = (1 −𝑚)(1 + 𝑢1𝜏)𝜃𝐼! + (1 + 𝑢1𝜏)𝛾𝐼" + 𝜌𝑅# − 	𝜂𝑅$ − 𝜇𝑅$. 

The control 𝑢%(𝑡) is a vaccine administered to a susceptible population, and the control function 
𝑢%(𝑡) is defined in the range 0 ≤ 𝑢%(𝑡) ≤ 1 for all 𝑡 ∈ Q𝑡4, 𝑡#R. The control 𝑢&(𝑡)  is antitoxin and 
antibiotic treatment administered to the disease-infected population, both symptomatic and 
asymptomatic, and the control function 𝑢&(𝑡) is defined in the range 0 ≤ 𝑢&(𝑡) ≤ 1 for all 𝑡 ∈ Q𝑡4, 𝑡#R. 
𝐶%	is the weight value of the objective function to reduce the number of people exposed to diphtheria 
but still in the incubation phase, 𝐶& is the weighted value of the objective function to reduce the number 
of infected with symptoms, 𝐶1	is the weighted value of the objective function to reduce the number of 
infected individuals without symptoms, 𝐶2	is the weight value of the objective function for the control 
𝑢%(𝑡), and 𝐶3 is the weight value of the objective function for the control𝑢&(𝑡). 

The optimal control problem is solved to minimize the diphtheria-infected population with 
minimal cost of implementing 𝑢% and 𝑢& controls, or we will find the control function (𝑢%∗ , 𝑢&∗)𝜖𝑈 such 
that the objective function 𝐽(𝑢%∗ , 𝑢&∗) < 𝐽(𝑢%, 𝑢&) for all (𝑢%, 𝑢&)𝜖𝑈. Based on the principle of Pontryagin 
[17], the first step to solving an optimal control problem is to determine the general form of the 
Hamiltonian of the objective function, 
			𝐻 = 𝑓X𝑡, 𝑥(𝑡), 𝑢(𝑡)Z + 𝜆7(𝑡)𝑔X𝑡, 𝑥(𝑡), 𝑢(𝑡)Z, 

	𝐻 = H𝐶%𝐿(𝑡) + 𝐶&𝐼!(𝑡) + 𝐶1𝐼"(𝑡) +
𝐶2
2
𝑢%&(𝑡) +

𝐶3
2
𝑢&&(𝑡)K

+ 𝜆%X𝐴 + 𝜂𝑅$ − (1 − 𝑢%𝜔 − 𝑢&𝜎)𝛽𝑆𝐼! − 𝑢%𝜔𝑆 − 𝜇𝑆	Z
+ 𝜆&X(1 − 𝑢%𝜔 − 𝑢&𝜎)𝛽𝑆𝐼! − 𝛿𝐿 − 𝜇𝐿Z
+ 𝜆1X(1 − 𝑛)𝛿𝐿 − (1 + 𝑢1𝜏)𝜃𝐼! − (𝛼 + 𝜇)𝐼!Z
+ 𝜆2(𝑛𝛿𝐿 − (1 + 𝑢1𝜏)𝛾𝐼" − 𝜇𝐼")
+ 𝜆3X𝑚(1 + 𝑢1𝜏)𝜃𝐼! + 𝑢%𝜔𝑆 − 𝜌𝑅# − 𝜇𝑅#Z
+ 𝜆8 ](1 −𝑚)(1 + 𝑢1𝜏)𝜃𝐼! + (1 + 𝑢1𝜏)𝛾𝐼" + 𝜌𝑅# − 	𝜂𝑅$ − 𝜇𝑅$^, 

 
 
 
 
 
 
 
 

(2) 
when 𝝀 = (𝜆% 𝜆& 𝜆1 𝜆2 𝜆3				𝜆8)7 is a Lagrange multiplier.  
Based on the Hamiltonian function in equation (2), the state equation is obtained with the following 
conditions: 

�̇� =
𝜕𝐻
𝜕𝝀

= b
𝜕𝐻
𝜕𝜆%

𝜕𝐻
𝜕𝜆&

𝜕𝐻
𝜕𝜆1

𝜕𝐻
𝜕𝜆2

𝜕𝐻
𝜕𝜆3

c
7

																	 , 𝒙(𝑡4) = 𝒙4, 

�̇� = X�̇� �̇� 𝐼!̇ 𝐼"̇ �̇�#			�̇�$Z
7
																																								, 𝒙(𝑡4) = 𝒙4. 

The costate equation is also obtained from equation (2), 

�̇� = −
𝜕𝐻
𝜕𝒙

= H−
𝜕𝐻
𝜕𝑆

−
𝜕𝐻
𝜕𝐿

−
𝜕𝐻
𝜕𝐼!

−
𝜕𝐻
𝜕𝐼"

−
𝜕𝐻
𝜕𝑅#

−
𝜕𝐻
𝜕𝑅$

K
7

, 

�̇� = X�̇�% �̇�& �̇�1 �̇�2 �̇�3			�̇�8Z
7, 

where 
�̇�% = (𝜆% − 𝜆&)(1 − 𝑢%𝜔)𝛽(𝐼! + 𝐼") + (𝜆% − 𝜆3)𝑢%𝜔 + 𝜆%𝜇, 
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�̇�& = −𝐶% + (𝜆& − 𝜆1(1 − 𝑛) − 𝜆2𝑛)𝛿 + 𝜆&𝜇, 
�̇�1 − 𝐶& + (𝜆% − 𝜆&)(1 − 𝑢%𝜔)𝛽𝑆 + X𝜆1 − 𝜆3𝑚− 𝜆8(1 − 𝑚)Z(1 + 𝑢1𝜏)𝜃 + 𝜆1(𝛼 + 𝜇), 
�̇�2 = −𝐶1 + (𝜆% − 𝜆&)(1 − 𝑢%𝜔)𝛽𝑆 + (𝜆2 − 𝜆8)(1 + 𝑢1𝜏)𝛾 + +𝜆2𝜇,  
�̇�3 = (𝜆3 − 𝜆8)𝜌 + 𝜆3𝜇, 
�̇�8 = (𝜆8 − 𝜆%)𝜂 + 𝜆8𝜇. 
The transversality condition is 𝝀X𝑡#Z = 0. 

Optimal conditions are obtained from the stationary conditions 9:
9;
= ] 9:9;&

9:
9;'
^
7
= (0 0)7, 

𝑢% =
(𝜆& − 𝜆%)𝜔𝛽𝑆(𝐼! + 𝐼") + (𝜆% − 𝜆3)𝜔𝑆

𝐶2
, 

𝑢& =
(𝜆1 − 𝜆3𝑚− 𝜆8(1 − 𝑚))𝜏𝜃𝐼! + (𝜆2 − 𝜆8)𝜏𝛾𝐼"

𝐶3
. 

In this way, the optimal control conditions are obtained: 

𝑢%∗ = 𝑚𝑖𝑛 d𝑚𝑎𝑥 d0,
(𝜆& − 𝜆%)𝜔𝛽𝑆(𝐼! + 𝐼") + (𝜆% − 𝜆3)𝜔𝑆

𝐶2
f , 1f, 

𝑢&∗ = 𝑚𝑖𝑛 d𝑚𝑎𝑥 d0,
X𝜆1 − 𝜆3𝑚− 𝜆8(1 − 𝑚)Z𝜏𝜃𝐼! + (𝜆2 − 𝜆8)𝜏𝛾𝐼"

𝐶3
f , 1f 

The numerical simulation is performed by the Matlab2015a application and uses the forward-
backward sweep method as the numerical method. The solution 𝒙(𝑡) is obtained by forward Runge-
Kutta, and 𝝀(𝑡) is obtained using the backward Runge-Kutta method. The time interval Q𝑡4, 𝑡#Rwith 𝑡4 =
0	and 𝑡# = 60	days. It is assumed that the initial condition of the variable 𝑆(0) = 579384 individuals, 
𝐿(0) = 250 individuals, 𝐼!(0) = 2526 individuals, 𝐼"(0) = 1000 individuals, 𝑅#(0) = 1000 
individual, and 𝑅$(0) = 1000 individuals. The weight value of the objective function to be minimized 
is 𝐶% = 𝐶& = 𝐶1 = 𝐶2 = 𝐶3 = 𝐶8 = 1. 

Figure 2 shows the comparison of latent population change with control and without control. The latent 
population with no control experienced a large increase, while the latent population with control 
experienced a small increase until it peaked and thereafter decreased and was stable until the end of the 
observation time. The increase in the latent population indicates that the infected susceptible population 
is  increasing,  while  the  decrease  in  the  latent  population  occurs  because  the  incubation  period  
for diphtheria, which ranges from 2 to 5 days, has ended. The small increase in the latent population 
with controls  was  due  to  the  control  of  susceptible  individuals,  so  the  number  of  infected  
susceptible individuals became smaller. 

 

Figure 2. Graph of latent population change over time (𝑡 = 60 days ) 
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The population infected with the symptoms in Figure 3 that was controlled decreased, while those that 
were not controlled experienced a significant increase. The increase in the uncontrolled symptoms 
infected population was directly proportional to the increase in the uncontrolled latent population. The 
greater the increase in the uncontrolled latent population, the greater the increase in the uncontrolled 
symptom-infected population. The decline in the uncontrolled symptoms infected population is due to 
deaths from infectious diseases and natural remedies. The decrease in the infected population with 
symptoms brought under control occurs due to the provision of control treatment so that the healing 
process can be accelerated and the death rate of the population due to infectious diseases can be reduced. 
 
Figure 3. Graph of Infected with symptoms population change over time (𝑡 = 60 days ) 

 
Figure 4. Graph of Infected without symptoms population change over time (𝑡 = 60 days ) 

 

 
The two asymptomatic infected populations in Figure 4, the control and no control, experienced an 
increase, but there was a significant difference in the increase between the two populations. This pattern 
happened because the susceptible population received vaccination control at the beginning, so the 
infected susceptible population decreased. As a result, the asymptomatic infected population being 
controlled was also reduced, and treatment control was given again so that the asymptomatic infected 
population was reduced due to an accelerated healing process. 
 
The values of 𝑢%(𝑡) and 𝑢&(𝑡) reach optimal values from the early observation, which means that 
vaccination for susceptible populations and treatment for infected populations must be given in large 
quantities from the beginning. Figure 5. shows that the values of 𝑢%(𝑡) and 𝑢&(𝑡) are equal to one and 
the only change on the 59th day before dropping significantly to zero at the end of the observation 
period. It means that for optimal suppression of the rate of spread of diphtheria disease, the 𝑢%(𝑡) vaccine 
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must be administered continuously, while the 𝑢&(𝑡) treatment must be continuously administered if 
there is a diphtheria-infected population showing symptoms and no symptoms.  
 
Figure 5. Comparison graph of changes in vaccination control 𝑢%	(𝑡) and treatment control 𝑢&(𝑡) 

 
 

CONCLUSIONS AND SUGGESTIONS 

The SLIR model was developed by dividing the infected population (I) into infected with symptoms (𝐼!) 
and infected without symptoms (𝐼"), dividing the recovered population (R) into recovered with full 
immunity (𝑅#) and recovered with partial immunity X𝑅$Z. This study also applies optimal controls such 
as vaccination for susceptible populations and treatment for symptomatic and asymptomatic infected 
populations. The results of numerical simulations show that the number of symptomatic and 
asymptomatic diphtheria infections can be reduced by controlling vaccination and treatment. The control 
values 𝑢% and 𝑢&, which are maximal from the beginning to the end of the observation, indicate that 
vaccination and treatment efforts must be given continuously in large quantities. 
 

It is hoped that further research will be able to examine the model of diphtheria disease spread by 
considering the age limit of the susceptibles population and adding controls other than vaccination and 
treatments such as mask use and activity restrictions. 
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